Advertisement

Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries

  • Yuan-Xiang Fu
  • Xian-Yinan Pei
  • Dong-Chuan MoEmail author
  • Shu-Shen Lyu
Article
  • 5 Downloads

Abstract

In this paper, a type of macroporous carbon (MPC) material was produced using water-soluble sodium carbonate (Na2CO3) as the template and glucose as the carbon precursor. After annealing in an argon atmosphere (Ar) at 700 °C, the samples exhibited specific surface areas up to 600 m2 g−1 with different proportions of sodium carbonate and glucose. When the samples were employed as anode materials in lithium-ion batteries, the electrodes delivered a stable reversible capacity at 200 mA g−1 and favourable cycling stability at 500 mA g−1. Moreover, all MPC samples exhibited excellent rate performances at 5000 mA g−1.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Grant No. 51676212), Fundamental Research Funds for the Central Universities (Grant No. 17lgpy68). and Pearl River S&T Nova Program of Guangzhou (Grant No. 201710010043).

Supplementary material

10854_2019_807_MOESM1_ESM.docx (610 kb)
Supplementary material 1 (DOCX 609 KB)

References

  1. 1.
    J. Lee, J. Kim, T. Hyeon (2006) Adv. Mater. 18, 2073.  https://doi.org/10.1002/adma.200501576 CrossRefGoogle Scholar
  2. 2.
    L. Chuenchom, R. Kraehnert, B.M. Smarsly, Soft Matter. 8, 10801 (2012).  https://doi.org/10.1039/c2sm07448f CrossRefGoogle Scholar
  3. 3.
    B. Xu, L. Peng, G.Q. Wang, G.P. Cao, F. Wu, Carbon 48, 2377 (2010).  https://doi.org/10.1016/j.carbon.2010.03.003 CrossRefGoogle Scholar
  4. 4.
    H.J. Wang, X.X. Sun, Z.H. Liu, Z.B. Lei, Nanoscale 6, 6577 (2014).  https://doi.org/10.1039/c4nr00538d CrossRefGoogle Scholar
  5. 5.
    B. Xu, L. Shi, X.W. Guo et al., Electrochim. Acta 56, 6464 (2011).  https://doi.org/10.1016/j.electacta.2011.04.130 CrossRefGoogle Scholar
  6. 6.
    H. Liu, C.Y. Cao, F.F. Wei et al., J. Phys. Chem. C 117, 21426 (2013).  https://doi.org/10.1021/jp4078807 CrossRefGoogle Scholar
  7. 7.
    S. Ucar, M. Erdem, T. Tay, S. Karagoz, Clean Technol. Environ. 17, 747 (2015).  https://doi.org/10.1007/s10098-014-0830-8 CrossRefGoogle Scholar
  8. 8.
    W.Z. Zhou, Z.X. Lin, G.S. Tong et al., RSC Adv. 6, 111406 (2016).  https://doi.org/10.1039/c6ra24524b CrossRefGoogle Scholar
  9. 9.
    L.T. Ma, H.Q. Fan, K. Fu et al., ACS Sustain. Chem. Eng. 5, 7093 (2017).  https://doi.org/10.1021/acssuschemeng.7b01312 CrossRefGoogle Scholar
  10. 10.
    X.H. Ren, H.Q. Fan, J.W. Ma, C. Wang, M.C. Zhang, N. Zhao, Appl. Surf. Sci. 441, 194 (2018).  https://doi.org/10.1016/j.apsusc.2018.02.013 CrossRefGoogle Scholar
  11. 11.
    M.C. Zhang, H.Q. Fan, N. Zhao et al., Chem. Eng. J. 347, 291 (2018).  https://doi.org/10.1016/j.cej.2018.04.113 CrossRefGoogle Scholar
  12. 12.
    S.W. Bian, J. Baltrusaitis, P. Galhotra, V.H. Grassian, J. Mater. Chem. 20, 8705 (2010).  https://doi.org/10.1039/c0jm01261k CrossRefGoogle Scholar
  13. 13.
    S. Yu, H.R. Wang, C. Hu, Q.Z. Zhu, N. Qiao, B. Xu, J. Mater. Chem. A 4, 16341 (2016).  https://doi.org/10.1039/c6ta07047g CrossRefGoogle Scholar
  14. 14.
    S.E. Bae, K.J. Kim, I.H. Choi, S. Huh, Carbon 99, 8 (2016).  https://doi.org/10.1016/j.carbon.2015.11.069 CrossRefGoogle Scholar
  15. 15.
    C. Liu, J. Wang, J.S. Li et al., J. Mater. Chem. A 4, 11916 (2016).  https://doi.org/10.1039/c6ta03748h CrossRefGoogle Scholar
  16. 16.
    O. Noonan, H.W. Zhang, H. Song, C. Xu, X.D. Huang, C.Z. Yu, J. Mater. Chem. A 4, 9063 (2016).  https://doi.org/10.1039/c6ta02265k CrossRefGoogle Scholar
  17. 17.
    S. Leyva-Garcia, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, J. Mater. Chem. A 4, 4570 (2016).  https://doi.org/10.1039/c5ta10552h CrossRefGoogle Scholar
  18. 18.
    Q. Ding, X.Y. Song, X.J. Yao et al., Nanoscale Res. Lett. 8, 545 (2013).  https://doi.org/10.1186/1556-276x-8-545 CrossRefGoogle Scholar
  19. 19.
    A. Ilnicka, J.P. Lukaszewicz, Mater. Sci. Eng. B-Adv. 201, 66 (2015).  https://doi.org/10.1016/j.mseb.2015.08.002 CrossRefGoogle Scholar
  20. 20.
    X.S. Qi, Q. Ding, H. Zhang, W. Zhong, C. Au, Y.W. Du, Mater. Lett. 81, 135 (2012).  https://doi.org/10.1016/j.matlet.2012.04.106 CrossRefGoogle Scholar
  21. 21.
    X.H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. Int. Edit. 51, 9689 (2012).  https://doi.org/10.1002/anie.201203207 CrossRefGoogle Scholar
  22. 22.
    B.B. Zhang, J.L. Song, G.Y. Yang, B.X. Han, Chem. Sci. 5, 4656 (2014).  https://doi.org/10.1039/C4sc01950d CrossRefGoogle Scholar
  23. 23.
    H. Lei, T.T. Yan, H. Wang, L.Y. Shi, J.P. Zhang, D.S. Zhang, J. Mater. Chem. A 3, 5934 (2015).  https://doi.org/10.1039/c4ta05713a CrossRefGoogle Scholar
  24. 24.
    Z.H. Xiao, Y.Q. Zhu, H.T. Yi, X.Y. Chen, Electrochim. Acta 155, 93 (2015).  https://doi.org/10.1016/j.electacta.2014.12.104 CrossRefGoogle Scholar
  25. 25.
    P.Y. Zhao, J.J. Tang, C.Y. Wang, J. Solid State Electron. 21, 555 (2017).  https://doi.org/10.1007/s10008-016-3406-1 CrossRefGoogle Scholar
  26. 26.
    A.F. Arif, Y. Chikuchi, R. Balgis, T. Ogi, K. Okuyama, RSC Adv. 6, 83421 (2016).  https://doi.org/10.1039/c6ra15217a CrossRefGoogle Scholar
  27. 27.
    L.M. Jin, F. He, W.L. Cai, J.X. Huang, B.H. Liu, Z.P. Li, J. Power Sources 328, 536 (2016).  https://doi.org/10.1016/j.jpowsour.2016.08.060 CrossRefGoogle Scholar
  28. 28.
    F. Chen, F.M. Ni, W. Zhang, Adv. Environ. Sci. Eng. 518523, 144 (2012).  https://doi.org/10.4028/www.scientific.net/AMR.518-523.144 Google Scholar
  29. 29.
    A.C. Ferrari, J.C. Meyer, V. Scardaci et al. (2006) Phys. Rev. Lett.  https://doi.org/10.1103/Physrevlett.97.187401 Google Scholar
  30. 30.
    C.R. Zhao, W.K. Wang, Z.B. Yu, H. Zhang, A.B. Wang, Y.S. Yang, J. Mater. Chem. 20, 976 (2010).  https://doi.org/10.1039/b911913b CrossRefGoogle Scholar
  31. 31.
    M. JMA Tarascon, Nature 414, 356 (2001)Google Scholar
  32. 32.
    K. YJ EunJoo, H. Eiji, H-s. Zhou, T. Kudo, H. Itaru, Nano Lett. 8, 2277 (2008)CrossRefGoogle Scholar
  33. 33.
  34. 34.
    B. Gao, H.Q. Fan, X.J. Zhang, J. Phys. Chem. Solids 73, 423 (2012).  https://doi.org/10.1016/j.jpcs.2011.11.019 CrossRefGoogle Scholar
  35. 35.
    X.-Y. Pei, D.-C. Mo, S.-S. Lyu, J.-H. Zhang, Y.-X. Fu, J. Mater. Sci.: Mater. Electron. 29, 11982 (2018).  https://doi.org/10.1007/s10854-018-9300-0 Google Scholar
  36. 36.
    L. Pan, X.D. Zhu, X.M. Xie, Y.T. Liu, Adv. Funct. Mater. 25, 3341 (2015).  https://doi.org/10.1002/adfm.201404348 CrossRefGoogle Scholar
  37. 37.
    B.B. Wu, T. Liu, Q.B. Xia, X.D. Wu, J. Electrochem. Soc. 160, A1720 (2013).  https://doi.org/10.1149/2.042310jes CrossRefGoogle Scholar
  38. 38.
    Z.H. Guo, C.Y. Wang, M.M. Chen, M.W. Li, Int. J. Electrochem. Sci. 8, 2702 (2013)Google Scholar
  39. 39.
    X. Zhang, S.C. Han, C.L. Fan, L.F. Li, W.H. Zhang, J. Solid State Electron. 19, 715 (2015).  https://doi.org/10.1007/s10008-014-2650-5 CrossRefGoogle Scholar
  40. 40.
    Y.Y. Li, H.Y. Zhang, Y.M. Chen et al., ACS Appl. Mater. Interfaces 8, 197 (2016).  https://doi.org/10.1021/acsami.5b08340 CrossRefGoogle Scholar
  41. 41.
    T.Q. Chen, L.K. Pan, X.J. Liu, K. Yu, Z. Sun, RSC Adv. 2, 11719 (2012).  https://doi.org/10.1039/c2ra21740f CrossRefGoogle Scholar
  42. 42.
    X. Cui, Y.Q. Wang, Z. Chen et al., Electrochim. Acta 180, 858 (2015).  https://doi.org/10.1016/j.electacta.2015.09.012 CrossRefGoogle Scholar
  43. 43.
    F. Zhang, R.H. Zhang, G.M. Liang, J.K. Feng, L. Lu, Y.T. Qian, Mater. Lett. 111, 165 (2013).  https://doi.org/10.1016/j.matlet.2013.08.115 CrossRefGoogle Scholar
  44. 44.
    A. Funabiki, M. Inaba, T. Abe, Z. Ogumi, J. Electrochem. Soc. 146, 2443 (1999).  https://doi.org/10.1149/1.1391953 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MaterialsSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Chemical Engineering and TechnologySun Yat-sen UniversityGuangzhouChina

Personalised recommendations