Low-cost Schiff bases chromophores as efficient co-sensitizers for MH-13 in dye-sensitized solar cells

  • M. Abdel-ShakourEmail author
  • Waleed A. El-SaidEmail author
  • Islam M. Abdellah
  • Rui Su
  • Ahmed El-Shafei


Herein, we reported on the synthesis of four Schiff bases (S1–4) based on salicylaldehyde moieties and their applications as metal-free organic chromophores for sensitization and co-sensitization of dye-sensitized solar cells (DSSCs). These sensitizers are comprised of a phenyl ring as a donor scaffold connected with a carboxylic group as acceptor/anchoring unit. To gauge their applicability as photosensitizers for DSSCs the photophysical, electrochemical, theoretical studies and charge transport characteristics were carried out. Interestingly, uses of S2 and S4 dyes as co-sensitizers with well-known MH-13 dye resulted in enhancing its photovoltaic properties from 8.217 to 8.79% and 8.48%, respectively. Furthermore, the photo-sensitizer S3 individually shows better photovoltaic properties compared to S1, S2 and S4, due to the fast photo-induced electron transfer from the phenyl ring to the nitro group. This fast electron transfer resulted from the overlapping between HOMO and LUMO levels on phenyl ring bearing nitro group. The results indicate that these simple and easy prepared Schiff bases moieties may be considered as promising and low-cost co-sensitizers for DSSCs.



The authors of this manuscript would like to thank science and technology development fund (STDF), Egypt ( for the financial support of this scientific research work through Short–Term Fellowship (STF) project. Also, my sincere thanks to Prof. Dr. Ahmed Elshafei (College of textiles, North Carolina State University, USA) for his acceptance to perform a part of this work in his lab.

Compliance with ethical standards

Conflict of interest

The authors declared no conflict of interests.

Supplementary material

10854_2019_806_MOESM1_ESM.docx (4.2 mb)
Supplementary material 1 (DOCX 4276 KB)


  1. 1.
    N. Tétreault, É. Arsenault, L.-P. Heiniger, N. Soheilnia, J. Brillet, T. Moehl, S. Zakeeruddin, G.A. Ozin, M. Grätzel, Nano Lett. 11, 4579–4584 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Tang, Y. Wang, X. Li, H. Ågren, W.-H. Zhu, Y. Xie, ACS Appl. Mater. Interfaces 7, 27976–27985 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.-H. Zhu, J. Am. Chem. Soc. 137, 14055–14058 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Mishra, M.K. Fischer, P. Bäuerle, Angew. Chem. Int. Ed. 48, 2474–2499 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2903–2934 (2009)CrossRefGoogle Scholar
  6. 6.
    Z. Ning, Y. Fu, H. Tian, Energy Environ. Sci. 3, 1170–1181 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595–6663 (2010)CrossRefGoogle Scholar
  8. 8.
    C. Qin, W.Y. Wong, L. Han, Chem. Asian J. 8, 1706–1719 (2013)CrossRefGoogle Scholar
  9. 9.
    C.-L. Ho, W.-Y. Wong, J. Photochem. Photobiol. C 28, 138–158 (2016)CrossRefGoogle Scholar
  10. 10.
    J.-H. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 4, 842–857 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Luo, Z. Wan, C. Jia, Y. Wang, X. Wu, Electrochim. Acta 215, 506–514 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Hua, L.T.L. Lee, C. Zhang, J. Zhao, T. Chen, W.-Y. Wong, W.-K. Wong, X. Zhu, J. Mater. Chem. A 3, 13848–13855 (2015)CrossRefGoogle Scholar
  13. 13.
    H.M. Marwani, A.M. Asiri, S.A. Khan, Arab. J. Chem. 7, 609–614 (2014)CrossRefGoogle Scholar
  14. 14.
    C.R. Bhattacharjee, C. Datta, G. Das, P. Mondal, Mater. Sci. Eng. C 32, 735–741 (2012)CrossRefGoogle Scholar
  15. 15.
    M.T. Sharbati, M.N.S. Rad, S. Behrouz, A. Gharavi, F. Emami, J. Lumin. 131, 553–558 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Tsaturyan, Y. Machida, T. Akitsu, I. Gozhikova, I. Shcherbakov, J. Mol. Struct. 1162, 54–62 (2018)CrossRefGoogle Scholar
  17. 17.
    A.G. Imer, R.H.B. Syan, M. Gülcan, Y.S. Ocak, A. Tombak, J. Mater. Sci.: Mater. Electron. 29, 898–905 (2018)Google Scholar
  18. 18.
    J. Zhang, L. Xu, W.-Y. Wong, Coord. Chem. Rev. 355, 180–198 (2018)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, J.M. Cole, P.G. Waddell, K.S. Low, X. Liu, ACS Sustain. Chem. Eng. 1, 1440–1452 (2013)CrossRefGoogle Scholar
  20. 20.
    P.E. Reyes-Gutiérrez, T. Kapal, B. Klepetářová, D. Šaman, R. Pohl, Z. Zawada, E. Kužmová, M. Hájek, F. Teplý, Sci. Rep. 6, 23499 (2016)CrossRefGoogle Scholar
  21. 21.
    V.Z. Mota, G.S. de Carvalho, P.P. Corbi, F.R. Bergamini, A.L. Formiga, R. Diniz, M.C. Freitas, A.D. da Silva, A. Cuin, Spectrochim. Acta A 99, 110–115 (2012)CrossRefGoogle Scholar
  22. 22.
    A.G. Ligtenbarg, R. Hage, A. Meetsma, B.L. Feringa, J. Chem. Soc. Perkin Trans. 2, 807–812 (1999)CrossRefGoogle Scholar
  23. 23.
    Z.-X. Hang, B. Dong, X.-W. Wang, Acta Crystallogr. E 66, o1776–o1776 (2010)CrossRefGoogle Scholar
  24. 24.
    D. Gayathri, D. Velmurugan, K. Ravikumar, S. Devaraj, M. Kandaswamy, Acta Crystallogr. Sect. E 63, o849–o851 (2007)CrossRefGoogle Scholar
  25. 25.
    P. Naik, R. Su, D.D. Babu, A. El-Shafei, A.V. Adhikari, J. Iran. Chem. Soc. 14, 2457–2466 (2017)CrossRefGoogle Scholar
  26. 26.
    S.E. Koops, B.C. O’Regan, P.R. Barnes, J.R. Durrant, J. Am. Chem. Soc. 131, 4808–4818 (2009)CrossRefGoogle Scholar
  27. 27.
    Q.-H. Yao, L. Shan, F.-Y. Li, D.-D. Yin, C.-H. Huang, New J. Chem. 27, 1277–1283 (2003)CrossRefGoogle Scholar
  28. 28.
    P. Qu, G.J. Meyer, Langmuir 17, 6720–6728 (2001)CrossRefGoogle Scholar
  29. 29.
    G. Oskam, B.V. Bergeron, G.J. Meyer, P.C. Searson, J. Phys. Chem. B 105, 6867–6873 (2001)CrossRefGoogle Scholar
  30. 30.
    N. Koide, A. Islam, Y. Chiba, L. Han, J. Photochem. Photobiol. A 182, 296–305 (2006)CrossRefGoogle Scholar
  31. 31.
    H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, L. Sun, Chem. Commun. (2007). Google Scholar
  32. 32.
    H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, L. Sun, J. Phys. Chem. C 112, 11023–11033 (2008)CrossRefGoogle Scholar
  33. 33.
    P. Gabbott, Principles and Applications of Thermal Analysis. (Wiley, Hoboken, 2008)Google Scholar
  34. 34.
    P.J. Haines, Thermal Methods of Analysis: Principles, Applications and Problems. (Springer, Dordrecht, 2012)Google Scholar
  35. 35.
    R.Y.-Y. Lin, F.-L. Wu, C.-H. Chang, H.-H. Chou, T.-M. Chuang, T.-C. Chu, C.-Y. Hsu, P.-W. Chen, K.-C. Ho, Y.-H. Lo, J. Mater. Chem. A 2, 3092–3101 (2014)CrossRefGoogle Scholar
  36. 36.
    W. Ying, F. Guo, J. Li, Q. Zhang, W. Wu, H. Tian, J. Hua, ACS Appl. Mater. Interfaces 4, 4215–4224 (2012)CrossRefGoogle Scholar
  37. 37.
    R. Noriega, J. Rivnay, K. Vandewal, F.P. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo, Nat. Mater. 12, 1038 (2013)CrossRefGoogle Scholar
  38. 38.
    P. Zamora, M. Camarada, I. Jessop, F. Díaz, M. del Valle, L. Cattin, G. Louarn, J. Bernede, Int. J. Electrochem. Sci. 7, 8276–8287 (2012)Google Scholar
  39. 39.
    S. Hayashi, N. Nishioka, H. Nishiyama, T. Koizumi, Synth. Met. 162, 1485–1489 (2012)CrossRefGoogle Scholar
  40. 40.
    H. Detert, E. Sugiono, Synth. Met. 115, 89–92 (2000)CrossRefGoogle Scholar
  41. 41.
    Y.-W. Dong, R.-Q. Fan, P. Wang, L.-G. Wei, X.-M. Wang, S. Gao, H.-J. Zhang, Y.-L. Yang, Y.-L. Wang, Inorg. Chem. 54, 7742–7752 (2015)CrossRefGoogle Scholar
  42. 42.
    J. Bisquert, Phys. Chem. Chem. Phys. 5, 5360–5364 (2003)CrossRefGoogle Scholar
  43. 43.
    F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 87, 117–131 (2005)CrossRefGoogle Scholar
  44. 44.
    G. Li, M. Liang, H. Wang, Z. Sun, L. Wang, Z. Wang, S. Xue, Chem. Mater. 25, 1713–1722 (2013)CrossRefGoogle Scholar
  45. 45.
    G. Wu, F. Kong, Y. Zhang, X. Zhang, J. Li, W. Chen, W. Liu, Y. Ding, C. Zhang, B. Zhang, J. Phys. Chem. C 118, 8756–8765 (2014)CrossRefGoogle Scholar
  46. 46.
    Q. Wang, J.-E. Moser, M. Grätzel, J. Phys. Chem. B 109, 4945–14953 (2005)Google Scholar
  47. 47.
    A.S. Beni, M. Zarandi, A. Madram, Y. Bayat, A.N. Chermahini, R. Ghahary, Electrochim. Acta 186, 504–511 (2015)CrossRefGoogle Scholar
  48. 48.
    D.D. Babu, R. Su, P. Naik, A. El-Shafei, A.V. Adhikari, Dyes Pigment 141, 112–120 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Polymer and Color Chemistry ProgramNorth Carolina State UniversityRaleighUSA
  3. 3.Chemistry Department, Faculty of ScienceUniversity of JeddahJeddahSaudi Arabia

Personalised recommendations