Outstanding performances of Ni2CoS4/expanded graphite with ultrafine Ni2CoS4 particles for supercapacitor applications

  • Renjie Qu
  • Shuihua TangEmail author
  • Yang Li
  • Zewei Wei
  • Qiang Li
  • Wei Jiang


Nickel sulfides are desirable electrode materials for supercapacitors, while low electronic conductivity and poor cyclic stability restrict their wide applications. Herein, Ni2CoS4/expanded graphite (Ni2CoS4/EG) composite was prepared in mixed solvents of ethylene glycol and H2O via a rapid and energy-saving microwave heating method. Scanning transmission electron microscopy image shows that Ni2CoS4 particles are ultrafine with an average diameter of 2 nm and uniformly distributed on expanded graphite. The specific capacitance of the Ni2CoS4/EG composite can reach up to 2056.8 F g−1 at 5 A g−1 as compared to 1574.4 F g−1 of Ni3S4, 229.1 F g−1 of CoS and 1516.6 F g−1 of Ni2CoS4; and even at higher current density of 30 A g−1, the specific capacitance can still demonstrates 1923.3 F g−1, thus 92.5% of rate capability can be achieved as the current density increases from 5 to 30 A g−1. Moreover, it exhibits an excellent stability of 94.4% after cycling at current density of 30 A g−1 for 2000 cycles. The composite delivers high initial capacitance, excellent rate capability, and fantastic stability. Furthermore, the fabricated AC//Ni2CoS4/EG asymmetric supercapacitor also exhibits a high specific capacitance of 120.3 F g−1 at 0.5 A g−1, an superior cycle life (91% at 5 A g−1 for 5000 cycles), and an extremely high energy density of 52 Wh kg−1 at 477 W kg−1. This work offers a new insight to synthesize ultrafine bimetallic sulfides, and the superior high performances of the Ni2CoS4/EG composite can provide practical applications in supercapacitors.



This work was supported by the Open Project of Fuel Cells & Hybrid Electric Power Key Lab, Chinese Academy of Sciences (KLFC201702), the Open Project from State Key Lab of Catalysis (N-14-1), and the Innovative Research Team of Southwest Petroleum University (2015CXTD04).

Supplementary material

10854_2019_803_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1155 KB)


  1. 1.
    Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)CrossRefGoogle Scholar
  3. 3.
    A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Huang, B.G. Sumpter, V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry 14, 6614–6626 (2008)CrossRefGoogle Scholar
  5. 5.
    L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
  6. 6.
    A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sour. 157, 11–27 (2006)CrossRefGoogle Scholar
  7. 7.
    O.B.M. Hahn, F.P. Campana, R. Kötz, R. Gallay, Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes. Appl. Phys. A 82, 633–638 (2006)CrossRefGoogle Scholar
  8. 8.
    X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4, 453–489 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Wang, Z. Guan, Y. Shen, S. Yu, X.-Z. Fu, R. Sun, C.-P. Wong, Shape-controlled synthesis of CoMoO4@Co1.5Ni1.5S4 hybrids with rambutan-like structure for high-performance all-solid-state supercapacitors. Chem. Eng. J. 346, 193–202 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Xie, Z. Xu, S. Duan, Z. Tian, Y. Zhang, K. Xiang, M. Lin, X. Guo, W. Ding, Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 11, 216–224 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Guo, H. Song, Y. Liu, C. Wang, FeNi2S4 QDs@C composites as a high capacity and long life anode material for lithium ion battery and ex situ investigation of electrochemical mechanism. Electrochim. Acta 258, 1173–1181 (2017)CrossRefGoogle Scholar
  12. 12.
    C. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang, S.-Z. Qiao, A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium–sulfur batteries. Adv. Func. Mater. 27, 1702524 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Zheng, Z. Han, W. Yang, F. Qu, B. Liu, X. Wu, 3D Co3O4@MnO2 heterostructures grown on a flexible substrate and their applications in supercapacitor electrodes and photocatalysts. Dalton Trans. 45, 16850–16858 (2016)CrossRefGoogle Scholar
  14. 14.
    W.Z.L. Zhang, H. Jiu, C. Ni, J. Chang, G. Qi, The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor. Electrochim. Acta 215, 212–222 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Sun, P. Zan, X. Yang, L. Ye, L. Zhao, Room-temperature synthesis of Fe3O4/Fe–carbon nanocomposites with Fe–carbon double conductive network as supercapacitor. Electrochim. Acta 215, 483–491 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Li, M.F. El-Kady, J.Y. Hwang, M.D. Kowal, K. Marsh, H. Wang, Z. Zhao, R.B. Kaner, Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Res. 11, 2836–2846 (2018)CrossRefGoogle Scholar
  17. 17.
    L. Ye, L. Zhao, H. Zhang, B. Zhang, H. Wang, One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J. Mater. Chem. A 4, 9160–9168 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Li, K.Y. Ma, J.P. Cheng, D. Lv, X.B. Zhang, Nickel–cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J. Power Sourc. 286, 438–444 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Lai, Y. Huang, Y.-E. Miao, T. Liu, Controllable preparation of multi-dimensional hybrid materials of nickel–cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. Electrochim. Acta 174, 456–463 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Qu, S. Tang, X. Qin, J. Yuan, Y. Deng, L. Wu, J. Li, Z. Wei, Expanded graphite supported Ni(OH)2 composites for high performance supercapacitors. J. Alloy. Compd. 728, 222–230 (2017)CrossRefGoogle Scholar
  21. 21.
    R. Qu, Z. Dai, ShuihuaTang,Z. Zhu, G.M. Haarberg, Facile preparation of layered Ni(OH)2/graphene composite from expanded graphite. Int. J. Electrochem. Sci. 12, 8833–8846 (2017)CrossRefGoogle Scholar
  22. 22.
    Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, F. Xu, K. Jiang, Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018)CrossRefGoogle Scholar
  23. 23.
    P. Zhang, B.Y. Guan, L. Yu, X.W.D. Lou, Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem. 56, 7141–7145 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Wu, X. Shi, W. Song, H. Ren, C. Tan, S. Tang, X. Meng, Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M = Ni, Fe, Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors. Nano Energy 45, 439–447 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Zhang, X. Cai, Y. Qian, H. Jiang, L. Zhou, B. Li, L. Lai, Z. Shen, W. Huang, Electrochemically synthesis of nickel cobalt sulfide for high-performance flexible asymmetric supercapacitors. Adv. Sci. 5, 1700375 (2018)CrossRefGoogle Scholar
  26. 26.
    X. Yang, H. Niu, H. Jiang, Z. Sun, Q. Wang, F. Qu, One-step synthesis of NiCo2S4/graphene composite for asymmetric supercapacitors with superior performances. Chemelectrochem 5, 1576–1585 (2018)CrossRefGoogle Scholar
  27. 27.
    Z.C. Yan, T. Wang, Y. Lei, Z. Ai, X. Peng, H. Yan, Z.M.W. Li, Y.-L. Jijun Zhang, Chueh, Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv. Energy Mater. 8, 1703453 (2018)CrossRefGoogle Scholar
  28. 28.
    T. Wang, B. Zhao, H. Jiang, H.-P. Yang, K. Zhang, M.M.F. Yuen, X.-Z. Fu, R. Sun, C.-P. Wong, Electro-deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. J. Mater. Chem. A 3, 23035–23041 (2015)CrossRefGoogle Scholar
  29. 29.
    F. Zhao, W. Huang, H. Zhang, D. Zhou, Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors. Appl. Surf. Sci. 426, 1206–1212 (2017)CrossRefGoogle Scholar
  30. 30.
    L.S. Shuihua Tang, Z. Dai, Z. Zhu, H. Huangfu, High supercapacitive performance of Ni(OH)2/XC-72 composite prepared by microwave-assisted method. RSC Adv. 5, 43164–43171 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Li, M. Wei, W. Chu, N. Wang, High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem. Eng. J. 316, 277–287 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)CrossRefGoogle Scholar
  33. 33.
    X. Qin, S. Tang, J. Yuan, Y. Deng, R. Qu, L. Wu, J. Li, Enhanced performances of functionalized XC-72 supported Ni(OH)2 composites for supercapacitors. New J. Chem. 41, 11372–11382 (2017)CrossRefGoogle Scholar
  34. 34.
    B. Wang, Y. Qin, W. Tan, Y. Tao, Y. Kong, Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim. Acta 241, 1–9 (2017)CrossRefGoogle Scholar
  35. 35.
    C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)CrossRefGoogle Scholar
  36. 36.
    P. Guo, H. Song, Y. Liu, C. Wang, CuFeS2 quantum dots anchored in carbon frame: superior lithium storage performance and the study of electrochemical mechanism. ACS Appl. Mater. Interfaces 9, 31752–31762 (2017)CrossRefGoogle Scholar
  37. 37.
    X. Chen, D. Chen, X. Guo, R. Wang, H. Zhang, Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 18774–18781 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Yang, C. Yu, C. Hu, M. Wang, S. Li, H. Huang, K. Bustillo, X. Han, C. Zhao, W. Guo, Z. Zeng, H. Zheng, J. Qiu, Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Func. Mater. 28, 1803272 (2018)CrossRefGoogle Scholar
  39. 39.
    M.L. Jun, Y. Liang, M. Chai, L. Luo, Li, TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors. J. Power Sourc. 362, 123–130 (2017)CrossRefGoogle Scholar
  40. 40.
    L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, Z. Zheng, Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018)CrossRefGoogle Scholar
  41. 41.
    K. Tao, X. Han, Q. Ma, L. Han, A metal-organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47, 3496–3502 (2018)CrossRefGoogle Scholar
  42. 42.
    C.T. Chiu, D.H. Chen, One-step hydrothermal synthesis of three-dimensional porous Ni–Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors. Nanotechnol. 29, 175602 (2018)CrossRefGoogle Scholar
  43. 43.
    Q. Chen, J. Miao, L. Quan, D. Cai, H. Zhan, Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors. Nanoscale 10, 4051–4060 (2018)CrossRefGoogle Scholar
  44. 44.
    R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, X. He, Y. Wang, Z. Xu, A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 422, 597–606 (2017)CrossRefGoogle Scholar
  45. 45.
    L. Jin, B. Liu, Y. Wu, S. Thanneeru, J. He, Synthesis of mesoporous CoS2 and NixCo1–xS2 with superior supercapacitive performance using a facile solid-phase sulfurization. ACS Appl. Mater. Interfaces 9, 36837–36848 (2017)CrossRefGoogle Scholar
  46. 46.
    B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017)CrossRefGoogle Scholar
  47. 47.
    C. Lamiel, V.H. Nguyen, M. Baynosa, D.C. Huynh, J.-J. Shim, Hierarchical mesoporous carbon sphere@nickel cobalt sulfide core–shell structures and their electrochemical performance. J. Electroanal. Chem. 771, 106–113 (2016)CrossRefGoogle Scholar
  48. 48.
    G.C. Lau, N.A. Sather, H. Sai, E.M. Waring, E. Deiss-Yehiely, L. Barreda, E.A. Beeman, L.C. Palmer, S.I. Stupp, Oriented multiwalled organic-Co(OH)2 nanotubes for energy storage. Adv. Func. Mater. 28, 1702320 (2018)CrossRefGoogle Scholar
  49. 49.
    X. Qi, W. Zheng, G. He, T. Tian, N. Du, L. Wang, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem. Eng. J. 309, 426–434 (2017)CrossRefGoogle Scholar
  50. 50.
    S.T. Leping Sui, Y. Chen, Z. Dai, H. Huangfu, X.Q. Zhentao Zhu, Y. Deng, Geir Martin Haarberg, an asymmetric supercapacitor with good electrochemical performances based on Ni(OH)2/AC/CNT and AC. Electrochim. Acta 182, 1159–1165 (2015)CrossRefGoogle Scholar
  51. 51.
    S.T. Leping Sui, Z. Dai, Z. Zhu, H. Huangfu, Q. Xiaolong, Supercapacitive behavior of an asymmetric supercapacitor based on a Ni(OH)2/XC-72 composite. New J. Chem. 39, 9363–9371 (2015)CrossRefGoogle Scholar
  52. 52.
    S.G. Mohamed, I. Hussain, J.J. Shim, One-step synthesis of hollow C–NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10, 6620–6628 (2018)CrossRefGoogle Scholar
  53. 53.
    Y. Liu, Q. Lu, Z. Huang, S. Sun, B. Yu, U. Evariste, G. Jiang, J. Yao, Electrodeposition of Ni–Co–S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloy. Compd. 762, 301–311 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab of Oil and Gas Reservoir Geology & ExploitationSouthwest Petroleum UniversityChengduPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduPeople’s Republic of China
  3. 3.Sichuan New Li-Idea Energy Science and Technology Co., LtdSuiningPeople’s Republic of China

Personalised recommendations