Characterization of annealed N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine nanostructured thin films

  • Ahmed El-ghandour
  • Abdou Eltamimy
  • Mohamed Farhat O. HameedEmail author
  • S. S. A. ObayyaEmail author


Exploring new efficient derivatives of polyphenylamines to act as a hole transport layer (HTL) in organic light emitting diodes is a global demand. Herein, we introduce N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine (NTD) as a potential HTL. Nanostructured films of NTD with thickness 75 nm are spin coated. Subsequently, these films are manipulated via annealing process and characterized using different techniques. The fluorescence spectrophotometer reveals that NTD film undergoes a Stokes shift of 3546 cm−1 upon excition using a beam of wavelength of 365 nm. The X-ray diffraction analysis shows that NTD films consist of nanoparticles (NPs) with an average crystallite size of 33.43 nm. Upon annealing the films at temperatures of 373 and 423 K, the size of the NPs has climbed to 40.22 and 46.45 nm respectively. The UV/Vis spectroscopy indicates that the NTD films have transmittance values greater than 87% in the visible region, which are enough to meet the requirements of the HTL materials in optoelectronic devices. Additionally, the Urbach and bandgap energies are declined with the annealing temperatures. This is due to the dramatically ordering of the NTD NPs with the annealing process. Impedance spectroscopy is also conducted in the frequency range from 500 Hz to 5 MHz at temperatures of 303, 373, and 423 K. Further, the Nyquist plots (Zim vs. Zre) are fitted to an equivalent circuit using EC-Lab software. The impedance is descended by increasing the annealing temperature. On the same approach, the charge transfer resistance (Rct) dropped from 69.61 to 23.27 kΩ when the temperature is risen from 303 to 423 K, which confirms the semiconductor behavior of the NTD films.


Compliance with ethical standards

Conflict of interest

All authors declare that there are not any relationships or interests that could influence or bias the submitted work.


  1. 1.
    X. Zhao, X. Zhan, Chem. Soc. Rev. 40, 3728 (2011)CrossRefGoogle Scholar
  2. 2.
    D.M. De Leeuw, E. Cantatore, Mater. Sci. Semicond. Process. 11, 199 (2008)CrossRefGoogle Scholar
  3. 3.
    V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 107, 926 (2007)CrossRefGoogle Scholar
  4. 4.
    X. Yang, L. Wang, C. Wang, W. Long, Z. Shuai, Chem. Mater. 20, 3205 (2008)CrossRefGoogle Scholar
  5. 5.
    Y. Shirota, J. Mater. Chem. 10, 1 (2000)CrossRefGoogle Scholar
  6. 6.
    J.E. Norton, K.N. Houk, J. Am. Chem. Soc. 127, 4162 (2005)CrossRefGoogle Scholar
  7. 7.
    N.T. Kalyani, S.J. Dhoble, Renew. Sustain. Energy Rev. 44, 319 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Grätzel, Inorg. Chem. 44, 6841 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Noguchi, A. Saeki, T. Fujiwara, S. Yamanaka, M. Kumano, T. Sakurai, N. Matsuyama, M. Nakano, N. Hirao, Y. Ohishi, S. Seki, J. Phys. Chem. B 119, 7219 (2015)CrossRefGoogle Scholar
  10. 10.
    D. Roy, N.M. Das, P.S. Gupta, AIP Adv. 80, 42514–42522 (2014)Google Scholar
  11. 11.
    M.M. El-Nahass, H.M. Zeyada, N.A. El-Ghamaz, A.E.-G. Shetiwy, Optik (Stuttg). 171, 580 (2018)CrossRefGoogle Scholar
  12. 12.
    A. El-ghandour, M.F.O. Hameed, A.S. Awed, S.S.A. Obayya, Appl. Phys. A 124, 543 (2018)CrossRefGoogle Scholar
  13. 13.
    B.G.R. Agarwal, M.S. Alam, J. Appl. Polym. Sci. 129, 3728 (2013)CrossRefGoogle Scholar
  14. 14.
    A.F. Al-Hossainy, M.S. Zoromba, J. Mol. Struct. 1156, 83 (2018)CrossRefGoogle Scholar
  15. 15.
    B. York, in New X-Ray Diffr. Line Profile Funct. Based Cryst. Size Strain Distrib. Determ. from Mean F. Theory Stat. Mech. (MIT Center for Materials Science and Engineering, 1997), p. 41Google Scholar
  16. 16.
    E. Çetinörgü, S. Goldsmith, Y. Rosenberg, R.L. Boxman, J. Non-Cryst. Solids 353, 2595 (2007)CrossRefGoogle Scholar
  17. 17.
    A. El-ghandour, A.S. Awed, M.M.A.-E. khier, K. Abdeen, M.I.A. El Maaty, Opt. Laser Technol. 112, 126 (2019)CrossRefGoogle Scholar
  18. 18.
    E.P. Randviir, C.E. Banks, Anal. Methods 5, 1098 (2013)CrossRefGoogle Scholar
  19. 19.
    M.A. Fersi, I. Chaabane, M. Gargouri, Phys. E Low-Dimens. Syst. Nanostruct. 83, 306 (2016)CrossRefGoogle Scholar
  20. 20.
    EC-Lab® software V11.10 (2011)Google Scholar
  21. 21.
    L.C. Palilis, H. Murata, M. Uchida, Z.H. Kafafi, Org. Electron. 4, 113 (2003)CrossRefGoogle Scholar
  22. 22.
    J.C.S. Costa, R.J.S. Taveira, C.F.R.A.C. Lima, A. Mendes, L.M. Santos, Opt. Mater. (Amst). 58, 51 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Kirkpatrick, J. Nelson, J. Chem. Phys. 123, 084703 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Photonics and Smart MaterialsZewail City of Science and Technology6th of OctoberEgypt
  2. 2.Nanotechnology Engineering ProgramZewail City of Science and Technology6th of OctoberEgypt
  3. 3.Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations