Advertisement

Crystal structure correlation of ferroelectric and dielectric properties of Nb doped PZT95/5

  • Manoj Kumar
  • Rajwant Rai
  • Naveen Kumar
  • Gyaneshwar Sharma
  • Arun Kumar Singh
  • Sanjeev KumarEmail author
Article
  • 16 Downloads

Abstract

Pb(Zr0.95Ti0.05)1−xNbxO3 (x = 0.0, 0.02 and 0.025) polycrystalline ferroelectric (FE) ceramics were synthesized using conventional solid state method. The Rietveld refined X-ray diffraction pattern show all the compositions crystallize in the rhombohedral phase with R3c space group. The scanning electron microscopy result depicts the decrease in grain size with increase in niobium (Nb) doping. The temperature dependent dielectric permittivity shows the Nb doping increases the Curie temperature (Tc) and decreases the dielectric constant (εr) at Tc. FE analysis shows doping of Nb increases the remnant polarization (Pr) and decreases the coercive field (Ec).

Notes

Acknowledgements

M.K. and S.K. are thankful to Director, TBRL, Chandigarh for providing financial support in the form of CARS Project. Authors are also thankful to Punjab Engineering College (Deemed to be University), Chandigarh for providing basic research facilities.

References

  1. 1.
    C.Z. Ming, L.J. Yu, W.Y. Ling, Ferroelectrics 101, 225 (1990)CrossRefGoogle Scholar
  2. 2.
    J. Wang, X. Chen, J. Wang, G. Wang, H. Nie, F. Cao, X. Dong, J. Mater. Sci. Mater. Electron. 26, 8207 (2015)CrossRefGoogle Scholar
  3. 3.
    W.Y. Ling, Y.W. Zong, H.G. Rong, W.S. Lin, Q.C. Feng, W. Binggen, L.Y. Hu, Ferroelectrics 49, 169 (1983)CrossRefGoogle Scholar
  4. 4.
    R.E. Setchell, Appl. Phys. 97, 013507 (2005)CrossRefGoogle Scholar
  5. 5.
    R.S. Roth, J. Res. Natl Bur. Stand. 58, 75 (1957)CrossRefGoogle Scholar
  6. 6.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971)Google Scholar
  7. 7.
    J. Shen, X. Wang, T.D. Yang, H. Wang, J. Wei, J. Alloy Compd 721, 191 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Gao, J.X. Wang, S.Y. Yang, B. Qian, J. Mater. Sci. Mater. Electron. 24, 1664 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Tang, Y. Lin, C. Andrews, H. Sodano, Nanotechnology 22, 1 (2010)Google Scholar
  10. 10.
    R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000)CrossRefGoogle Scholar
  11. 11.
    N. Zhang, H. Yokota, A.M. Glazer, P.A. Thomas, Acta. Crystallogr. B 67, 461 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Phys. Rev. B 61, 8687 (2000)CrossRefGoogle Scholar
  13. 13.
    A.M. Glazer, P.A. Thomas, K.Z. Baba-Kishi, G. Pang, C.W. Tai, Phys. Rev. B 70, 18412318 (2004)CrossRefGoogle Scholar
  14. 14.
    C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)CrossRefGoogle Scholar
  15. 15.
    J. Frantti, S. Ivanov, S. Eriksson, H. Rundlöf, V. Lantto, J. Lappalainen, M. Kakihana, Phys. Rev. B 66, 064108 (2002)CrossRefGoogle Scholar
  16. 16.
    N. Zhang, H. Yokota, A.M. Glazer, Z. Ren, D.A. Keen, D.S. Keeble, P.A. Thomas, Z.G. Ye, Nat. Commun. 5, 5231 (2014)CrossRefGoogle Scholar
  17. 17.
    X.X. Wang, K. Murakami, O. Sugiyama, S. Kaneko, J. Eur. Ceram. Soc. 21, 1367 (2001)CrossRefGoogle Scholar
  18. 18.
    Y. Wu, G. Liu, Z. Gao, H. He, J. Appl. Phys. 123, 244102 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Yan, K.H. Cho, D. Maurya, A. Kumar, S. Kalinin, A. Khachaturyan, S. Priya, Appl. Phys. Lett. 102, 042903 (2013)CrossRefGoogle Scholar
  20. 20.
    G. Helke, S. Seifert, S.J. Cho, J. Eur. Ceram. Soc. 19, 1265 (1999)CrossRefGoogle Scholar
  21. 21.
    F. Gao, C.J. Wang, X.C. Liu, C.S. Tian, Ceram. Int. 33, 1019 (2007)CrossRefGoogle Scholar
  22. 22.
    X. Su, G. Bai, Y. Jia, Z. Wang, W. Wu, X. Yan, T. Ai, P. Zhao, L. Zhou, J. Eur. Ceram. Soc. 38, 3489 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Ouchi, K. Nagano, S. Hayakawa, J. Am. Ceram. Soc. 48, 630 (1965)CrossRefGoogle Scholar
  24. 24.
    C. Kittel, Phys. Rev. 70, 965 (1946)CrossRefGoogle Scholar
  25. 25.
    S. Samanta, V. Sankaranarayanan, K. Sethupathi, J. Mater. Sci. Mater. Electron. 29, 20383 (2018)CrossRefGoogle Scholar
  26. 26.
    X. Dai, Z. Xu, D. Viehland, J. Am. Ceram. Soc. 78, 2815 (1995)CrossRefGoogle Scholar
  27. 27.
    T. Jardiel, J.F. Fernandez, A.C. Caballero, M. Villegas, J. Electroceram. 21, 283 (2002)Google Scholar
  28. 28.
    Z. Ujma, J. Handerek, J. Eur. Ceram. Soc. 23, 203 (2003)CrossRefGoogle Scholar
  29. 29.
    T. Zeng, X. Dong, C. Mao, Z. Zhou, H. Yang, Ceram. Int. 27, 2025 (2007)Google Scholar
  30. 30.
    H. Yang, C. Luo, X. Dong, S. Chen, Y.Y. Zhang, Y.L. Wang, J. Mater. Sci. 42, 817 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Jiang, X. Li, J. Zhu, X. Zhu, W. Shi, L. Li, D. Xiao, J. Zhu, Curr. Appl. Phys. 10, 526 (2010)CrossRefGoogle Scholar
  32. 32.
    D. Jiang, J. Du, Y. Gu, Y. Feng, High Press. Res. 32, 280 (2012)Google Scholar
  33. 33.
    H. Nie, X. Dong, X. Chen, G. Wang, H. He, Mater. Res. Bull. 48, 3088 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Wang, H. Nie, C. Lan, G. Wang, X. Dong, X. Chen, F. Cao, H. He, Ceram. Int. 39, 3915 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Wang, G. Wang, H. Nie, X. Chen, F. Cao, X. Dong, J. Mater. Sci. Mater. Electron. 96, 2370 (2013)Google Scholar
  36. 36.
    J. Wang, G. Wang, X. Chen, Z. Hu, H. Nie, F. Cao, X. Dong, Mater. Sci. Eng. B 193, 170 (2015)CrossRefGoogle Scholar
  37. 37.
    J.S. Malhotra, A.K. Singh, R. Khosla, S.K. Sharma, G. Sharma, S. Kumar, J. Mater. Sci. Mater. Electron. 29, 3850 (2018)CrossRefGoogle Scholar
  38. 38.
    H.C. Nie, N.B. Feng, X.F. Chen, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, J. Am. Ceram. Soc. 93, 642 (2010)CrossRefGoogle Scholar
  39. 39.
    M. Cernea, G. Montanari, C. Galassi, A.L. Costa, Nanotechnology 17, 1731 (2006)CrossRefGoogle Scholar
  40. 40.
    K.C. Verma, M. Singh, R.K. Kotnala, N. Goyal, J. Magn. Magn. Mater. 496, 483 (2019)CrossRefGoogle Scholar
  41. 41.
    H. Zheng, I.M. Reaney, W.E. Lee, N. Jones, H. Thomas, J. Eur. Ceram. Soc. 21, 1371 (2001)CrossRefGoogle Scholar
  42. 42.
    S. Qiu, H. Fan, X. Zheng, J. Sol–Gel Sci. Technol. 42, 21 (2007)CrossRefGoogle Scholar
  43. 43.
    S. Qiu, X. Zheng, C. Gao, X. Gan, J. Chen, C. Yang, H. Fan, Ceram. Int. 35, 733 (2009)CrossRefGoogle Scholar
  44. 44.
    Y. Jiang, X. Wang, F. Zhang, H. He, Smart Mater. Struct. 23, 8 (2014)Google Scholar
  45. 45.
    H. Zheng, P. Wu, D. Dong, P. Zhang, Infrared Phys. Technol. 24, 21 (2011)CrossRefGoogle Scholar
  46. 46.
    T. Haccart, D. Remiens, E. Cattan, Thin Solid Films 423, 235 (2003)CrossRefGoogle Scholar
  47. 47.
    K.L. Yadav, P. Sharma, Indian J. Eng. Mater. Sci. 15, 61 (2008)Google Scholar
  48. 48.
    Q.M. Zang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)CrossRefGoogle Scholar
  49. 49.
    F. Kulcsar, J. Am. Ceram. Soc. 42, 343 (1959)CrossRefGoogle Scholar
  50. 50.
    A. Chaipanich, N. Jaitanong, R. Yimnirun, Ferroelectr. Lett. Sect. 36, 59 (2009)CrossRefGoogle Scholar
  51. 51.
    A. Hussain, N. Sinha, A.J. Joseph, S. Goel, B. Kumar, J. Mater. Sci. Mater. Electron. 29, 19567 (2018)CrossRefGoogle Scholar
  52. 52.
    Z. Ujma, L. Szymczak, J. Hańderek, K. Szot, H.J. Penkalla, J. Am. Ceram. Soc. 20, 1003 (2000)CrossRefGoogle Scholar
  53. 53.
    J. Fialka, P. Benes, L. Michlovska, S. Klusacek, S. Pikula, P. Dohnal, J. Eur. Ceram. Soc. 36, 2727 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Manoj Kumar
    • 1
  • Rajwant Rai
    • 2
  • Naveen Kumar
    • 1
  • Gyaneshwar Sharma
    • 1
  • Arun Kumar Singh
    • 3
  • Sanjeev Kumar
    • 1
    Email author
  1. 1.Department of Applied SciencesPunjab Engineering College (Deemed to be University)ChandigarhIndia
  2. 2.Terminal Ballistics Research LaboratoryChandigarhIndia
  3. 3.Department of Electronics and Communication EngineeringPunjab Engineering College (Deemed to be University)ChandigarhIndia

Personalised recommendations