Advertisement

A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets

  • Hong Yan YueEmail author
  • Hong Jie Zhang
  • Shuo Huang
  • Xin Gao
  • Shan Shan Song
  • Zhao Wang
  • Wan Qiu Wang
  • En Hao Guan
Article
  • 23 Downloads

Abstract

Ni(OH)2 nanoflakes (NFs) and graphene oxide (GO) nanosheets were prepared by a hydrothermal process and the modified Hummer’s method, respectively. Then, Ni(OH)2 NFs were dispersed in the GO suspension with the assistance of ultrasonic. Finally, the mixed colloidal solution was uniformly sprayed onto the surface of indium tin oxide (ITO) glass and annealed to obtain the NiO-reduced GO (RGO)/ITO electrode, which subsequently used for electrochemical sensing of dopamine (DA) analyte. The NiO-RGO/ITO electrode exhibits enhanced electrochemical response in the aqueous solution of DA analyte, which shows a high sensitivity (1.04 µA µM− 1), the lower measured detection limit (1 µM). The NiO-RGO/ITO electrode also exhibits an excellent selectivity under the interference of uric acid, repeatability and stability. The prepared sensor has been successfully applied in real samples and has a great potential to be used in clinical medicine.

Notes

Acknowledgements

We acknowledge the financial support from the Ministry of Personnel of China (2015192), Postdoctoral Initial Founding of Heilongjiang Province (LBH-Q14117), Technology Foundation for Selected Overseas Chinese Scholar, Science Funds for the Young Innovative Talents of HUST (201604) and the Innovative Talent Fund of Harbin city (2016RAQXJ185).

Supplementary material

10854_2019_796_MOESM1_ESM.docx (507 kb)
Supplementary material 1 (DOCX 506 KB)

References

  1. 1.
    B.J. Sanghavi, S.M. Mobin, P. Mathur, G.K. Lahiri, A.K. Srivastava, Biomimetic sensor for certain catecholamines employing copper (II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens. Bioelectron. 39, 124–132 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Liu, M.D. Wei, I. Honma, H. Zhou, Biosensing properties of titanate nanotube films: selective detection of dopamine in the presence of ascorbate and uric acid. Adv. Funct. Mater. 16, 371–376 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Zhang, C. Liao, Y. Yao, Z. Liu, F. Gong, F. Yan, High-performance dopamine sensors based on whole-graphene solution-gated transistors. Adv. Funct. Mater. 24, 978–985 (2014)CrossRefGoogle Scholar
  4. 4.
    W. Deng, X. Yuan, Y. Tan, M. Ma, Q. Xie, Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules. Biosens. Bioelectron. 85, 618–624 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Roychoudhury, S. Basu, S.K. Jha, Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens. Bioelectron. 84, 72–81 (2016)CrossRefGoogle Scholar
  6. 6.
    K. Ghanbari, M. Moloudi, Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Analy. Biochem. 512, 91–102 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Luo, Z. Zhang, Q. Wan, K. Wu, N. Yang, Lithium-doped NiO nanofibers for non-enzymatic glucose sensing. Electrochem. Commun. 61, 89–92 (2015)CrossRefGoogle Scholar
  8. 8.
    Z.H. Ibupoto, A. Nafady, R.A. Soomro, S. Sirajuddin, S.T. Hussain Sherazi, M.I. Abro et al., Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. RSC Adv. 5, 18773–18781 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Ramasamy, K. Ramachandran, G.G. Philip, R. Ramachandran, H.A. Therese, G. Gnana kumar, Design and development of Co3O4/NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5, 76538–76547 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen, Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 4, 7333–7349 (2016)CrossRefGoogle Scholar
  11. 11.
    P. Si, X.C. Dong, P. Chen, D.H. Kim, A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors. J. Mater. Chem. B 1, 110–115 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Xiong, T. Zhang, W. Kong, Z. Zhang, H. Qu, W. Chen et al., ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens. Bioelectron. 101, 21–28 (2017)CrossRefGoogle Scholar
  13. 13.
    H.Y. Yue, S. Huang, J. Chang, C. Heo, F. Yao, S. Adhikari et al., ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson’s disease. Acs Nano 8, 1639–1646 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Ding, Y. Liu, J. Parisi, L. Zhang, Y. Lei, A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens. Bioelectron. 28, 393–398 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Wu, M. Xu, H. Wu, J. Xu, Y. Wang, Z. Peng et al., Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. J. Mater. Chem. 22, 19821–19825 (2012)CrossRefGoogle Scholar
  16. 16.
    F. Cao, S. Guo, H. Ma, D. Shan, S. Yang, J. Gong, Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance. Biosens. Bioelectron. 26, 2756–2760 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Tyagi, M. Tomar, V. Gupta, NiO nanoparticle-based urea biosensor. Biosens. Bioelectron. 41, 110–115 (2013)CrossRefGoogle Scholar
  18. 18.
    Q. Li, Q. Wei, L. Xie, C. Chen, C. Lu, F.-Y. Su et al., Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode. RSC Adv. 6, 46548–46557 (2016)CrossRefGoogle Scholar
  19. 19.
    C. Wang, J. Xu, M.-F. Yuen, J. Zhang, Y. Li, X. Chen et al., Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv. Func. Mater. 24, 6372–6380 (2014)CrossRefGoogle Scholar
  20. 20.
    H.Y. Yue, S.S. Song, S. Huang, H. Zhang, X.P.A. Gao, X. Gao et al., Preparation of MoS2-graphene hybrid nanosheets and simultaneously electrochemical determination of levodopa and uric acid. Electroanal. 29, 2565–2571 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan et al., Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 3, 18753–18808 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRefGoogle Scholar
  23. 23.
    N. Ye, Z. Wang, S. Wang, H. Fang, D. Wang, Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry. Environ. Sci. Pollut. R. 25, 10956–10965 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Wang, Y. Sun, X. Yu, D. Ma, J. Zheng, P. Dou et al., Ag–Pt hollow nanoparticles anchored reduced graphene oxide composites for non-enzymatic glucose biosensor. J. Mater. Sci. 27, 9370–9378 (2016)Google Scholar
  25. 25.
    S. Verma, A. Singh, A. Shukla, J. Kaswan, K. Arora, J. Ramirez-Vick et al., Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS Appl. Mater. Inter. 9, 27462–27474 (2017)CrossRefGoogle Scholar
  26. 26.
    J.H. Ko, S. Yeo, J.H. Park, J. Choi, C. Noh, S.U. Son, Graphene-based electrochromic systems: the case of Prussian Blue nanoparticles on transparent graphene film. Chem. Commun. 48, 3884–3886 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li et al., Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 21, 3514–3520 (2009)CrossRefGoogle Scholar
  28. 28.
    H.Y. Yue, H. Zhang, J. Chang, X. Gao, S. Huang, L.H. Yao et al., Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode. Anal. Biochem. 488, 22–27 (2015)CrossRefGoogle Scholar
  29. 29.
    Y.Y. Hong, Z. Hong, S. Huang, Y.L. Xuan, G. Xin, C. Jing et al., Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens. Bioelectron. 89, 592–597 (2016)Google Scholar
  30. 30.
    H.Y. Yue, B. Wang, S. Huang, X. Gao, X.Y. Lin, L.H. Yao et al., Determination of levodopa in the presence of uric acid using a ZnO nanoflower-modified indium tin oxide glass electrode. Ionics. 23, 1–8 (2017)CrossRefGoogle Scholar
  31. 31.
    S.S. Choo, E.S. Kang, I. Song, D. Lee, J.W. Choi, T.H. Kim, Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sensors. 861, 1–11 (2017)Google Scholar
  32. 32.
    D. Zhao, G. Yu, K. Tian, C. Xu, A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens. Bioelectron. 82, 119–126 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Chen, P. He, H. Bai, S. He, T. Zhang, X. Zhang et al., Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sensor. Actuat. B 252, 9–16 (2017)CrossRefGoogle Scholar
  34. 34.
    R. Chen, Y. Wang, Y. Liu, J. Li, Selective electrochemical detection of dopamine using nitrogen-doped graphene/manganese monoxide composites. RSC Adv. 5, 85065–85072 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Yang, H. Chen, C. Jing, S. Luo, W. Li, K. Jiao, Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sensor. Actuat. B 249, 451–457 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hong Yan Yue
    • 1
    Email author
  • Hong Jie Zhang
    • 1
  • Shuo Huang
    • 1
    • 2
  • Xin Gao
    • 1
  • Shan Shan Song
    • 1
  • Zhao Wang
    • 1
  • Wan Qiu Wang
    • 1
  • En Hao Guan
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations