Advertisement

Microstructure and performance evolution of SnPbSb solder joint under γ-ray irradiation and thermal cycling

  • Jianhao Wang
  • Songbai XueEmail author
  • Zhaoping Lv
  • Li Wen
  • Siyi Liu
Article
  • 11 Downloads

Abstract

The requirements of miniaturization and light-weighting in the manufacture of satellite have placed much emphasis on the property of its electronic materials. To comprehend the reliability evolution of solder joint in electronic components exposed to cosmic environment, the effect of γ-ray irradiation and thermal cycling on the microstructure and performance of SnPbSb solder joints was studied. The results indicated that micro-voids and micro-cracks formed in solder matrix and the mechanical property of solder joint was decreased with the increasing irradiation time, while the thickness of intermetallic compound layer (IML) in solder joints was hardly changed. Moreover, these micro-voids and micro-cracks partly vanished during the thermal cycling process due to the migration of atoms, but the thickness of IML was greatly increased which caused the further decrease of the mechanical property of solder joint. Fracture analysis indicated that the effect of irradiation and/or thermal cycling on the fracture type of solder joint was inconspicuous, but the ductility was slightly changed in different conditions.

Notes

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51675269) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell, S.W. Squyres, Science 306, 1753 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Wang, Y. Cheng, B. Yang, S. Jin, H. Su, Opt. Express 24, 5536 (2016)CrossRefGoogle Scholar
  3. 3.
    R. Sandau, Acta Astronaut. 66, 1 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Xue, Y. Li, J. Guang, X. Zhang, J. Guo, Int. J. Remote Sens. 29, 4339 (2008)CrossRefGoogle Scholar
  5. 5.
    F. Faccio, H.J. Barnaby, X.J. Chen, D.M. Fleetwood, L. Gonella, M. McLain, R.D. Schrimpf, Microelectron. Reliab. 48, 1000 (2008)CrossRefGoogle Scholar
  6. 6.
    H. Korey, M.M. Avi, M. Nikku, D. Drake, K. Heather, Astrophys J 806, 146 (2015)CrossRefGoogle Scholar
  7. 7.
    D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, Microelectron. Reliab. 52, 90 (2012)CrossRefGoogle Scholar
  8. 8.
    H.J. Barnaby, IEEE Trans. Nucl. Sci. 53, 3103 (2006)CrossRefGoogle Scholar
  9. 9.
    V.P. Singh, M.E. Medhat, N.M. Badiger, A.Z.M. Saliqur Rahman, Radiat. Phys. Chem. 106, 175 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Demiryont, D. Moorehead, Sol. Energy Mater. Sol. Cells 93, 2075 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Wu, S. Xue, J. Wang, J. Wang, S. Liu, J. Mater. Sci. Mater. Electron. 28, 10230 (2017)CrossRefGoogle Scholar
  12. 12.
    Q.S. Zhu, F. Gao, H.C. Ma, Z.Q. Liu, J.D. Guo, L. Zhang, J. Mater. Sci. Mater. Electron. 29, 5025 (2018)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, L. Sun, Y.H. Guo, C.W. He, J. Mater. Sci. Mater. Electron. 25, 1209 (2014)CrossRefGoogle Scholar
  14. 14.
    C.J. Lee, W.-Y. Chen, T.-T. Chou, T.-K. Lee, Y.-C. Wu, T.-C. Chang, J.-G. Duh, J. Mater. Sci. Mater. Electron. 26, 10055 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Wen, X. Zhao, Z. Chen, Y. Gu, Y. Wang, Z. Chen, X. Wang, J. Alloys Compd. 696, 799 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Ma, P. Wu, J. Alloys Compd. 671, 127 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Zeng, S.D. McDonald, Q.F. Gu, K. Sweatman, K. Nogita, Philos. Mag. Lett. 94, 53 (2014)CrossRefGoogle Scholar
  18. 18.
    A.A. El-Daly, A.E. Hammad, A. Fawzy, D.A. Nasrallh, Mater. Des. 43, 40 (2013)CrossRefGoogle Scholar
  19. 19.
    Q.B. Tao, L. Benabou, L. Vivet, V.N. Le, F.B. Ouezdou, Mater. Sci. Eng. A 669, 403 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Zhong, W. Liu, C. Wang, X. Zhao, J.F.J.M. Caers, Mater. Sci. Eng. A 652, 264 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Wang, S. Xue, J.X. Wang, J. Mater. Sci. Mater. Electron. 28, 8246 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Wang, S. Xue, Z. Lv, L. Wen, S. Liu, Appl. Sci. 8, 1706 (2018)CrossRefGoogle Scholar
  23. 23.
    T.R. Oldham, F.B. McLean, IEEE Trans. Nucl. Sci. 50, 483 (2003)CrossRefGoogle Scholar
  24. 24.
    L. Wang, J. Tang, Q.-A. Huang, Sens. Actuators A 177, 99 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Wang, S. Xue, Z. Lv, L. Wang, H. Liu, L. Wen, J. Mater. Sci. Mater. Electron. 29, 20726 (2018)CrossRefGoogle Scholar
  26. 26.
    B.N. Singh, D.J. Edwards, P. Toft, J. Nucl. Mater. 299, 205 (2001)CrossRefGoogle Scholar
  27. 27.
    J. Wang, H. Nishikawa, Microelectron. Reliab. 54, 1583 (2014)CrossRefGoogle Scholar
  28. 28.
    F. Wang, H. Chen, Y. Huang, L. Liu, Z. Zhang, J. Mater. Sci. Mater. Electron. (2019)  https://doi.org/10.1007/s10854-019-00701-w Google Scholar
  29. 29.
    H.L.J. Pang, K.H. Tan, X.Q. Shi, Z.P. Wang, Mater. Sci. Eng. A 307, 42 (2001)CrossRefGoogle Scholar
  30. 30.
    Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, Intermetallics 31, 72 (2012)CrossRefGoogle Scholar
  31. 31.
    P. He, J. Zhang, R. Zhou, X. Li, Mater. Charact. 43, 287 (1999)CrossRefGoogle Scholar
  32. 32.
    X. Li, F. Li, F. Guo, Y. Shi, J. Electron. Mater. 40, 51 (2011)CrossRefGoogle Scholar
  33. 33.
    K. Linga Murty, J. Nucl. Mater. 270, 115 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations