Microstructure and performance evolution of SnPbSb solder joint under γ-ray irradiation and thermal cycling
- 11 Downloads
Abstract
The requirements of miniaturization and light-weighting in the manufacture of satellite have placed much emphasis on the property of its electronic materials. To comprehend the reliability evolution of solder joint in electronic components exposed to cosmic environment, the effect of γ-ray irradiation and thermal cycling on the microstructure and performance of SnPbSb solder joints was studied. The results indicated that micro-voids and micro-cracks formed in solder matrix and the mechanical property of solder joint was decreased with the increasing irradiation time, while the thickness of intermetallic compound layer (IML) in solder joints was hardly changed. Moreover, these micro-voids and micro-cracks partly vanished during the thermal cycling process due to the migration of atoms, but the thickness of IML was greatly increased which caused the further decrease of the mechanical property of solder joint. Fracture analysis indicated that the effect of irradiation and/or thermal cycling on the fracture type of solder joint was inconspicuous, but the ductility was slightly changed in different conditions.
Notes
Acknowledgements
This project is supported by National Natural Science Foundation of China (Grant No. 51675269) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
References
- 1.M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell, S.W. Squyres, Science 306, 1753 (2004)CrossRefGoogle Scholar
- 2.M. Wang, Y. Cheng, B. Yang, S. Jin, H. Su, Opt. Express 24, 5536 (2016)CrossRefGoogle Scholar
- 3.R. Sandau, Acta Astronaut. 66, 1 (2010)CrossRefGoogle Scholar
- 4.Y. Xue, Y. Li, J. Guang, X. Zhang, J. Guo, Int. J. Remote Sens. 29, 4339 (2008)CrossRefGoogle Scholar
- 5.F. Faccio, H.J. Barnaby, X.J. Chen, D.M. Fleetwood, L. Gonella, M. McLain, R.D. Schrimpf, Microelectron. Reliab. 48, 1000 (2008)CrossRefGoogle Scholar
- 6.H. Korey, M.M. Avi, M. Nikku, D. Drake, K. Heather, Astrophys J 806, 146 (2015)CrossRefGoogle Scholar
- 7.D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, Microelectron. Reliab. 52, 90 (2012)CrossRefGoogle Scholar
- 8.H.J. Barnaby, IEEE Trans. Nucl. Sci. 53, 3103 (2006)CrossRefGoogle Scholar
- 9.V.P. Singh, M.E. Medhat, N.M. Badiger, A.Z.M. Saliqur Rahman, Radiat. Phys. Chem. 106, 175 (2015)CrossRefGoogle Scholar
- 10.H. Demiryont, D. Moorehead, Sol. Energy Mater. Sol. Cells 93, 2075 (2009)CrossRefGoogle Scholar
- 11.J. Wu, S. Xue, J. Wang, J. Wang, S. Liu, J. Mater. Sci. Mater. Electron. 28, 10230 (2017)CrossRefGoogle Scholar
- 12.Q.S. Zhu, F. Gao, H.C. Ma, Z.Q. Liu, J.D. Guo, L. Zhang, J. Mater. Sci. Mater. Electron. 29, 5025 (2018)CrossRefGoogle Scholar
- 13.L. Zhang, L. Sun, Y.H. Guo, C.W. He, J. Mater. Sci. Mater. Electron. 25, 1209 (2014)CrossRefGoogle Scholar
- 14.C.J. Lee, W.-Y. Chen, T.-T. Chou, T.-K. Lee, Y.-C. Wu, T.-C. Chang, J.-G. Duh, J. Mater. Sci. Mater. Electron. 26, 10055 (2015)CrossRefGoogle Scholar
- 15.Y. Wen, X. Zhao, Z. Chen, Y. Gu, Y. Wang, Z. Chen, X. Wang, J. Alloys Compd. 696, 799 (2017)CrossRefGoogle Scholar
- 16.D. Ma, P. Wu, J. Alloys Compd. 671, 127 (2016)CrossRefGoogle Scholar
- 17.G. Zeng, S.D. McDonald, Q.F. Gu, K. Sweatman, K. Nogita, Philos. Mag. Lett. 94, 53 (2014)CrossRefGoogle Scholar
- 18.A.A. El-Daly, A.E. Hammad, A. Fawzy, D.A. Nasrallh, Mater. Des. 43, 40 (2013)CrossRefGoogle Scholar
- 19.Q.B. Tao, L. Benabou, L. Vivet, V.N. Le, F.B. Ouezdou, Mater. Sci. Eng. A 669, 403 (2016)CrossRefGoogle Scholar
- 20.Y. Zhong, W. Liu, C. Wang, X. Zhao, J.F.J.M. Caers, Mater. Sci. Eng. A 652, 264 (2016)CrossRefGoogle Scholar
- 21.H. Wang, S. Xue, J.X. Wang, J. Mater. Sci. Mater. Electron. 28, 8246 (2017)CrossRefGoogle Scholar
- 22.J. Wang, S. Xue, Z. Lv, L. Wen, S. Liu, Appl. Sci. 8, 1706 (2018)CrossRefGoogle Scholar
- 23.T.R. Oldham, F.B. McLean, IEEE Trans. Nucl. Sci. 50, 483 (2003)CrossRefGoogle Scholar
- 24.L. Wang, J. Tang, Q.-A. Huang, Sens. Actuators A 177, 99 (2012)CrossRefGoogle Scholar
- 25.J. Wang, S. Xue, Z. Lv, L. Wang, H. Liu, L. Wen, J. Mater. Sci. Mater. Electron. 29, 20726 (2018)CrossRefGoogle Scholar
- 26.B.N. Singh, D.J. Edwards, P. Toft, J. Nucl. Mater. 299, 205 (2001)CrossRefGoogle Scholar
- 27.J. Wang, H. Nishikawa, Microelectron. Reliab. 54, 1583 (2014)CrossRefGoogle Scholar
- 28.F. Wang, H. Chen, Y. Huang, L. Liu, Z. Zhang, J. Mater. Sci. Mater. Electron. (2019) https://doi.org/10.1007/s10854-019-00701-w Google Scholar
- 29.H.L.J. Pang, K.H. Tan, X.Q. Shi, Z.P. Wang, Mater. Sci. Eng. A 307, 42 (2001)CrossRefGoogle Scholar
- 30.Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, Intermetallics 31, 72 (2012)CrossRefGoogle Scholar
- 31.P. He, J. Zhang, R. Zhou, X. Li, Mater. Charact. 43, 287 (1999)CrossRefGoogle Scholar
- 32.X. Li, F. Li, F. Guo, Y. Shi, J. Electron. Mater. 40, 51 (2011)CrossRefGoogle Scholar
- 33.K. Linga Murty, J. Nucl. Mater. 270, 115 (1999)CrossRefGoogle Scholar