Advertisement

Nanotubular Ta2O5 as ultraviolet (UV) photodetector

  • Mahzaton Aqma Abu TalipEmail author
  • Nur Samihah Khairir
  • Rosmalini Ab Kadir
  • Mohamad Hafiz Mamat
  • Rozina Abdul Rani
  • Mohamad Rusop Mahmood
  • Ahmad Sabirin ZoolfakarEmail author
Article
  • 27 Downloads

Abstract

Nanostructure tantalum pentoxide (Ta2O5) has been beforehand illustrated to be a feasible semiconductor material with a large band gap energy of 3.9–4.5 eV, which serve as possible material for ultraviolet (UV) photodetector. However, its full potential as UV sensor was rarely investigated up to this date. Here, a novel UV sensor with low-cost fabrication and higher efficiency was successfully developed which was composed of nanotubular Ta2O5. Nanotubular Ta2O5 was prepared through anodization method with ethylene glycol, NH4F, H2O and H2SO4 acting as electrolyte. The effect of variable concentration of electrolyte and different condition of annealing on nanotubular Ta2O5 were systematically investigated. The UV sensing performance was discovered to be affected by the morphological and structural properties of nanotubular Ta2O5. This study is expected to open the way for the development of large-scale nanotubular Ta2O5 UV sensor with optimum UV responsivity and stability.

Notes

Acknowledgements

This work was supported by grant no. 600-IRMI/MyRA 5/3/GIP (070/2017) from Universiti Teknologi MARA, Malaysia. The authors would like to thank the Research Management Institute (RMI) of UiTM for their support on this research. The author would also like to thank the NANO-ElecTronic Center (NET), Faculty of Electrical Engineering, UiTM for the use of their laboratory and NANO-SciTech Centre (NST), Institute of Science (IOS), UiTM for the use of their AFM facility. Finally, we would like to thank Faculty of Applied Sciences, UiTM for the use of their XRD facility.

References

  1. 1.
    W. Tian, H. Lu, L. Li, Nano Res. 8, 382 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, Mater. Today 18, 493 (2015)CrossRefGoogle Scholar
  3. 3.
    K. Liu, M. Sakurai, M. Aono, Sensors 10, 8604 (2010)CrossRefGoogle Scholar
  4. 4.
    Y.-K. Kuo, S.-H. Yen, Y.-W. Wang, Proc. SPIE 6669, 66691J (2007)CrossRefGoogle Scholar
  5. 5.
    P.C. Chang, C.L. Yu, S.J. Chang, Y.C. Lin, S.L. Wu, IEEE Sens. J. 7, 1289 (2007)CrossRefGoogle Scholar
  6. 6.
    R. Nakamura, K. Tanaka, M. Ishimaru, K. Sato, T.J. Konno, H. Nakajima, Scr. Mater. 66, 182 (2012)CrossRefGoogle Scholar
  7. 7.
    X. Fang, L. Hu, K. Huo, B. Gao, L. Zhao, M. Liao, P.K. Chu, Y. Bando, D. Golberg, Adv. Funct. Mater. 21, 3907 (2011)CrossRefGoogle Scholar
  8. 8.
    M.S. Ghamsari, S. Alamdari, W. Han, H.H. Park, Int. J. Nanomed. 12, 207 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Li, Z. Liu, L. Wang, B. zhang, Y. Liu, J.P. Ao, Mater. Sci. Semicond. Process. 76, 61 (2018)CrossRefGoogle Scholar
  10. 10.
    T.H. Chou, Solid State Electron. 114, 55 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Zu, H. Wang, G. Yi, Z. Zhang, X. Jiang, J. Gong, H. Luo, Synth. Met. 200, 58 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Thepnurat, P. Ruankham, S. Phadunghitidhada, A. Gardchareon, D. Wongratanaphisan, S. Choopun, Surf. Coat. Technol. 306, 25 (2016)CrossRefGoogle Scholar
  13. 13.
    I. Sieber, B. Kannan, P. Schmuki, Electrochem. Solid-State Lett. 8, J10 (2005)CrossRefGoogle Scholar
  14. 14.
    K. Lee, P. Schmuki, Electrochem. Commun. 13, 542 (2011)CrossRefGoogle Scholar
  15. 15.
    Z. Liu, J. Zhang, Y. Lv, X. Zhou, S. Li, J. Alloys Compd. 700, 1 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Kant, R. Tabassum, B.D. Gupta, Sens. Actuators B 242, 810 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, R.P. Socha, D. Szwagierczak, Anal. Chim. Acta 931, 47 (2016)CrossRefGoogle Scholar
  18. 18.
    X. Yu, Z. Li, J. Liu, P. Hu, Appl. Catal. B 205, 271 (2016)CrossRefGoogle Scholar
  19. 19.
    M.S. Alam, U. Manzoor, M. Mujahid, A.S. Bhatti, J. Sensors (2016).  https://doi.org/10.1155/2016/8296936 Google Scholar
  20. 20.
    M.H. Mamat, Z. Khusaimi, M.M. Zahidi, M.R. Mahmood, Jpn. J. Appl. Phys. 50, 06GH04 (2011)CrossRefGoogle Scholar
  21. 21.
    N. Verma, K.C. Singh, B. Marí, M. Mollar, J. Jindal, Acta Phys. Pol. A 129, 297 (2016)CrossRefGoogle Scholar
  22. 22.
    R.A. Rani, A.S. Zoolfakar, J.Z. Oua, M.R. Field, M. Austin, K. Kalantar-Zadeh, Sens. Actuators B 176, 149 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Ab Kadir, R.A. Rani, M.M.Y.A. Alsaif, J.Z. Ou, W. Wlodarski, A.P. O’Mullane, K. Kalantar-Zadeh, ACS Appl. Mater. Interfaces 7, 4751 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Ruan, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, J. Phys. Chem. B 109, 15754 (2005)CrossRefGoogle Scholar
  25. 25.
    K.K. Kasem, S. Jones, Platin. Met. Rev. 52, 100 (2008)CrossRefGoogle Scholar
  26. 26.
    T. Plecenik, M. Moško, A.A. Haidry, P. ɰurina, M. Truchlý, B. Grančič, M. Gregor, T. Roch, L. Satrapinskyy, A. Mošková, M. Mikula, P. Kúš, A. Plecenik, Sens. Actuators B 207, 351 (2015)CrossRefGoogle Scholar
  27. 27.
    H. Yu, S. Zhu, X. Yang, X. Wang, H. Sun, M. Huo, PLoS ONE 8, 6 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Noothongkaew, O. Thumthan, K.S. An, Mater. Lett. 218, 274 (2018)CrossRefGoogle Scholar
  29. 29.
    A. Yu, S. Zhan, L. Qiu, X. Wang, H. Yang, Y. Li, Vacuum 151, 237 (2018)CrossRefGoogle Scholar
  30. 30.
    D.Y. Zhang, C.W. Ge, J.Z. Wang, T.F. Zhang, Y.C. Wu, F.X. Liang, Appl. Surf. Sci. 387, 1162 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Abouelsayed, W.H. Eisa, M. Dawy, A. Shabaka, Physica B 483, 8 (2016)CrossRefGoogle Scholar
  32. 32.
    N.K. Allam, X.J. Feng, C.A. Grimes, N.K. Allam, X.J. Feng, C.A. Grimes, Chem. Mater. 20, 6477 (2008)CrossRefGoogle Scholar
  33. 33.
    H.A. El-Sayed, V.I. Birss, Nanoscale 2, 793 (2010)CrossRefGoogle Scholar
  34. 34.
    H.H.H. Hareith, I. Jaafar, M. Abdulalkareem, a. Alsammerraei, Iraqi J. Sci. 53, 827 (2012)Google Scholar
  35. 35.
    J.Z. Ou, R.A. Rani, M.H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner, K. Kalantar-Zadeh, ACS Nano 6, 4045 (2012)CrossRefGoogle Scholar
  36. 36.
    T. Tian, X.F. Xiao, R.F. Liu, H. De She, X.F. Hu, J. Mater. Sci. 42, 5539 (2007)CrossRefGoogle Scholar
  37. 37.
    D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001)CrossRefGoogle Scholar
  38. 38.
    Y. Xue, Y. Sun, G. Wang, K. Yan, J. Zhao, Electrochim. Acta 155, 312 (2015)CrossRefGoogle Scholar
  39. 39.
    Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, J. Mater. Res. 20, 230 (2005)CrossRefGoogle Scholar
  40. 40.
    W. Wei, J.M. Macak, P. Schmuki, Electrochem. Commun. 10, 428 (2008)CrossRefGoogle Scholar
  41. 41.
    Y. Li, H. Yu, C. Zhang, W. Song, G. Li, Z. Shao, B. Yi, Electrochim. Acta 107, 313 (2013)CrossRefGoogle Scholar
  42. 42.
    K.S. Raja, T. Gandhi, M. Misra, Electrochem. Commun. 9, 1069 (2007)CrossRefGoogle Scholar
  43. 43.
    R.V. Gonçalves, P. Migowski, H. Wender, D. Eberhardt, D.E. Weibel, F.C. Sonaglio, M.J.M. Zapata, J. Dupont, A.F. Feil, S.R. Teixeira, J. Phys. Chem. C 116, 14022 (2012)CrossRefGoogle Scholar
  44. 44.
    R.V. Gonçalves, P. Migowski, H. Wender, A.F. Feil, M.J.M. Zapata, S. Khan, F. Bernardi, G.M. Azevedo, S.R. Teixeira, CrystEngComm 16, 797 (2014)CrossRefGoogle Scholar
  45. 45.
    K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gösele, ACS Nano 2, 302 (2008)CrossRefGoogle Scholar
  46. 46.
    J.E. Barton, C.L. Stender, P. Li, T.W. Odom, J. Mater. Chem. 19, 4896 (2009)CrossRefGoogle Scholar
  47. 47.
    R. Nakamura, K. Asano, M. Ishimaru, K. Sato, M. Takahashi, H. Numakura, J. Mater. Res. 29, 753 (2014)CrossRefGoogle Scholar
  48. 48.
    M.M. Momeni, M. Mirhosseini, M. Chavoshi, Surf. Eng. 33, 83 (2017)CrossRefGoogle Scholar
  49. 49.
    A.R. Rafieerad, A.R. Bushroa, B. Nasiri-Tabrizi, J. Vadivelu, S. Baradaran, E. Zalnezhad, A. Amiri, RSC Adv. 6, 10527 (2016)CrossRefGoogle Scholar
  50. 50.
    C.A. Horwood, H.A. El-Sayed, V.I. Birss, Electrochim. Acta 132, 91 (2014)CrossRefGoogle Scholar
  51. 51.
    R.V. Gonçalves, R. Wojcieszak, P.M. Uberman, D. Eberhardt, E. Teixeira-Neto, S.R. Teixeira, L.M. Rossi, Catal. Commun. 48, 50 (2014)CrossRefGoogle Scholar
  52. 52.
    R. Abdul Rani, A.S. Zoolfakar, J. Subbiah, J.Z. Ou, K. Kalantar-Zadeh, Electrochem. Commun. 40, 20 (2014)CrossRefGoogle Scholar
  53. 53.
    S.F. Akhtarianfar, A. Khayatian, M. Almasi-Kashi, Ceram. Int. 42, 13421 (2016)CrossRefGoogle Scholar
  54. 54.
    M.H. Mamat, M.F. Malek, N.N. Hafizah, Z. Khusaimi, M.Z. Musa, M. Rusop, Sens. Actuators B 195, 609 (2014)CrossRefGoogle Scholar
  55. 55.
    S. Hong, J. Yeo, W. Manorotkul, G. Kim, J. Kwon, K. An, S.H. Ko, J. Nanomater 2013, 2 (2013)Google Scholar
  56. 56.
    W.-K. Hong, J.I. Sohn, D.-K. Hwang, S.-S. Kwon, G. Jo, S. Song, S.-M. Kim, H.-J. Ko, S.-J. Park, M.E. Welland, T. Lee, Nano Lett. 8, 950 (2008)CrossRefGoogle Scholar
  57. 57.
    W. Park, W.-K. Hong, G. Jo, G. Wang, M. Choe, J. Maeng, Y.H. Kahng, T. Lee, Nanotechnology 20, 475702 (2009)CrossRefGoogle Scholar
  58. 58.
    T.-C. Chen, Y.-C. Yang, H.-L. Liu, C.-M. Yang, M. Meyyappan, C.-S. Lai, Proceedings 1, 461 (2017)CrossRefGoogle Scholar
  59. 59.
    S. Mun, H.C. Kim, H.U. Ko, L. Zhai, J.W. Kim, J. Kim, Sci. Technol. Adv. Mater. 18, 437 (2017)CrossRefGoogle Scholar
  60. 60.
    D. Kathiravan, B.R. Huang, A. Saravanan, J. Mater. Chem. C 5, 5239 (2017)CrossRefGoogle Scholar
  61. 61.
    A.M. Suhail, E.K. Hassan, S.S. Ahmed, M.K. Alnoori, Electron Devices 8, 268 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.Faculty of Mechanical EngineeringUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.NANO-SciTech Centre (NST), Institute of Science (IOS)Universiti Teknologi MARAShah AlamMalaysia

Personalised recommendations