Tailoring the shape and size of Fe3O4 nanocrystals by oxidation–precipitation processes for microwave absorption enhancement

  • Jiahui Zhao
  • Hanzhuo ZhangEmail author
  • Xuemei Ou


Microwave absorbing materials refined into nanoscale are known to have fascinating electromagnetic properties, whereas investigations on their shape and size dependence to microwave absorption performance are insufficient. In this study, single-crystal Fe3O4 with various shapes of nanoblocks, nanowires and nanospheres were prepared by surfactant-assisted oxidation–precipitation processes in oxygen-free environment without autoclaves. In microstructural characterizations, a broad size distribution of 30–200 nm for Fe3O4 nanoblocks and a uniform size around 50 nm for Fe3O4 nanospheres were obtained respectively, while Fe3O4 nanowires exhibited non-uniform length-to-diameter ratios. In electromagnetic analysis, Fe3O4 nanoblocks have higher saturation magnetization and increased coercivity in contrast to Fe3O4 nanowires and nanospheres. Both permeability and permittivity of Fe3O4 nanospheres are limited, while an increased attenuation constant is obtained at higher frequency due to the effective electromagnetic matching. As the absorbent thickness reaches 3.5 mm, the reflection loss of Fe3O4 nanowires achieves the minimum value of − 29.7 dB around 7.3 GHz, while the effective absorbing bandwidth (reflection loss ≤ − 10 dB) of Fe3O4 nanoblocks covers 5.6 GHz, demonstrating their potential applications in electromagnetic devices.



This work was supported by the Fundamental Research Funds for the Central Universities of China (No. 2015XKMS066).


  1. 1.
    K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 215, 37–55 (2017)CrossRefGoogle Scholar
  2. 2.
    L.C. Cheng, H.Y. Zhou, J.L. Xiong, S.K. Pan, J.L. Luo, Microstructure, electromagnetic and microwave absorbing properties of plate-like LaCeNi powder. J. Mater. Sci. Mater. Electron. 29, 18030–18035 (2018)CrossRefGoogle Scholar
  3. 3.
    S.L. Wen, Y. Liu, X.C. Zhao, Effect of annealing on electromagnetic performance and microwave absorption of spherical cobalt particles. J. Phys. D 48, 405001 (2015)CrossRefGoogle Scholar
  4. 4.
    I.M. De Rosa, F. Sarasini, M.S. Sarto, A. Tamburrano, EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications. IEEE Trans. Electromagn. Compat. 50, 556–563 (2008)CrossRefGoogle Scholar
  5. 5.
    T. Zhang, B. Xiao, P.Y. Zhou, L. Xia, G.W. Wen, H.B. Zhang, Porous-carbon-nanotube decorated carbon nanofibers with effective microwave absorption properties. Nanotechnology 28, 355708 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Xie, F. Wu, M.X. Sun, X.Q. Dai, Z.H. Xu, Y.Y. Qiu, Y. Wang, M.Y. Wang, Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Appl. Phys. Lett. 106, 222902 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Xia, S.F. Yuan, S.B. An, J. Jiang, L. Gan, T.J. Zhang, Microwave dielectric properties of the (1-x)(Mg0.97Zn0.03)(Ti0.97Sn0.03)O3-x(Ca0.8Na0.1Sm0.1)TiO3 ceramic system. J. Mater. Sci. Mater. Electron. 29, 18791–18796 (2018)CrossRefGoogle Scholar
  8. 8.
    T.A. Taha, S. Elrabaie, M.T. Attia, Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite. J. Mater. Sci. Mater. Electron. 29, 18493–18501 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Zeng, J. Liu, M. Yue, H.Z. Yang, H.R. Dong, W.K. Tang, H. Jiang, X.F. Liu, R.H. Yu, High-frequency electromagnetic properties of the manganese ferrite nanoparticles. J. Appl. Phys. 117, 17B527 (2015)CrossRefGoogle Scholar
  10. 10.
    R. Han, W. Li, W.W. Pan, M.G. Zhu, D. Zhou, F.S. Li, 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 4, 7493 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Liu, M. Zeng, R.H. Yu, X.F. Liu, M.G. Zhu, Size influence to the high-frequency properties of granular magnetite nanoparticles. IEEE T. Magn. 50, 2801304 (2014)Google Scholar
  12. 12.
    A.G. Yan, Y.J. Liu, Y. Liu, X.H. Li, Z. Lei, P.T. Liu, A NaAc-assisted large-scale coprecipitation synthesis and microwave absorption efficiency of Fe3O4 nanowires. Mater. Lett. 68, 402–405 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Jia, J.D. Zhang, X. Huang, X.B. Liu, Size dependent electromagnetic properties of Fe3O4 nanospheres. Chem. Phys. Lett. 614, 31–35 (2014)CrossRefGoogle Scholar
  14. 14.
    L.L. Zhang, P. Dai, X.X. Yu, Y. Li, Z.W. Bao, J. Zhu, K.R. Zhu, M.Z. Wu, X.S. Liu, G. Li, H. Bi, The preparation of Fe3O4 cube-like nanoparticles via the ethanol reduction of α-Fe2O3 and the study of its electromagnetic wave absorption. Appl. Surf. Sci. 359, 723–728 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, T.T. Cui, Y.N. Li, Y.T. Zhao, Y.C. Ye, W.H. Wu, G.X. Tong, Effects of crystal size and sphere diameter on static magnetic and electromagnetic properties of monodisperse Fe3O4 microspheres. Mater. Chem. Phys. 173, 152–160 (2016)CrossRefGoogle Scholar
  16. 16.
    W.X. Li, B.L. Lv, Y. Xu, Sub-30 nm Fe3O4 and γ-Fe2O3 octahedral particles: preparation and microwave absorption properties. J. Nanoparticle Res. 15, 2114 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Jazirehpour, S.A.S. Ebrahimi, Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloy Compd. 638, 188–196 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Yang, M. Li, Y.P. Wu, B.Y. Zong, J. Ding, Size-dependent microwave absorption properties of Fe3O4 nanodiscs. RSC Adv. 6, 25444–25448 (2016)CrossRefGoogle Scholar
  19. 19.
    X.L. Wang, Y.G. Liu, H.Y. Han, K. Mølhave, H.Y. Sun, Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake. Ceram. Int. 43, 16013–16017 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Liu, K.Y. Cao, Y.Z. Chen, Y.T. Ma, Q.F. Zhang, D.Q. Zeng, X.L. Liu, L.S. Wang, D.L. Peng, Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals. Mater. Chem. Phys. 192, 339–348 (2017)CrossRefGoogle Scholar
  21. 21.
    G.X. Tong, W.H. Wu, R. Qiao, J.H. Yuan, J.G. Guan, H.S. Qian, Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials. J. Mater. Res. 26, 1639–1645 (2011)CrossRefGoogle Scholar
  22. 22.
    H.Z. Zhang, J.H. Zhao, X.M. Ou, Facile synthesis of Fe3O4 nanowires at low temperature (80 °C) without autoclaves and their electromagnetic performance. Mater. Lett. 209, 48–51 (2017)CrossRefGoogle Scholar
  23. 23.
    K. Pal, U.N. Maiti, T.P. Majumder, S.C. Debnath, A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route. Appl. Surf. Sci. 258, 163–168 (2011)CrossRefGoogle Scholar
  24. 24.
    K. Seo, K. Sinha, E. Novitskaya, O.A. Graeve, Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 215, 203–206 (2018)CrossRefGoogle Scholar
  25. 25.
    X.G. Huang, Y.Y. Chen, J.H. Yu, J. Zhang, T.Y. Sang, G.X. Tao, H.L. Zhu, Fabrication and electromagnetic loss properties of Fe3O4 nanofibers. J. Mater. Sci.: Mater. Electron. 26, 3474–3478 (2015)Google Scholar
  26. 26.
    L.Y. Zhang, Y.F. Zhang, Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters. J. Magn. Magn. Mater. 321, L15–L20 (2009)CrossRefGoogle Scholar
  27. 27.
    J.G. Zhao, J.Z. Yin, S.G. Yang, Hydrothermal synthesis and magnetic properties of α-MnO2 nanowires. Mater. Res. Bull. 47, 896–900 (2012)CrossRefGoogle Scholar
  28. 28.
    Y.J. Liang, F.G. Fan, M. Ma, J.F. Sun, J. Chen, Y. Zhang, N. Gu, Size-dependent electromagnetic properties and the related simulations of Fe3O4 nanoparticles made by microwave-assisted thermal decomposition. Colloid. Surface. A 530, 191–199 (2017)CrossRefGoogle Scholar
  29. 29.
    S.L. Wen, Y. Liu, X.C. Zhao, J.W. Cheng, H. Li, Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys. Chem. Chem. Phys. 16, 18333–18340 (2014)CrossRefGoogle Scholar
  30. 30.
    Q. Zhang, C.F. Li, Y.N. Chen, Z. Han, H. Wang, Z.J. Wang, D.Y. Geng, W. Liu, Z.D. Zhang, Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite. Appl. Phys. Lett. 97, 133115 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Aharoni, Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69, 7762–7764 (1991)CrossRefGoogle Scholar
  32. 32.
    P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, F. Fiévet, Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 10, 1032–1035 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations