Advertisement

Design and microelectronic analysis of Au/ZnTe:I/CdTe:I/GaAs/In photosensor for optoelectronic applications using MBE technology

  • H. S. Wasly
  • M. S. Abd El-sadekEmail author
  • G. Karczewski
  • I. S. Yahia
Article
  • 15 Downloads

Abstract

Molecular beam epitaxy was applied to evaporate a set of Au/ZnTe:I/CdTe:I/GaAs/In heterostructures. The resulted heterostructures were examined for photovoltaic energy conversion application. Electrical characteristics were studied for understanding the relevant electrical transport mechanisms. The current–voltage (I–V) characteristics were checked under dark and light conditions. Ideality factor indicates the recombination mechanisms in the designed device; its value equals (3.22). Under various light intensities (1–140 mW cm−2), the I–V curves are affected highly by reverse voltage bias. The open-circuit voltage increases exponentially with the illumination and its values of this device increased with increasing light intensity (L), where 55 mV at 1 mW cm−2 and 465 mV at 140 mW cm−2. Electrical as well as power related parameters of the designed device were interpreted. Photosensitivity and Responsitivity of the studied device showed a high photoresponse under different light intensities. Au/ZnTe:I/CdTe:I/GaAs/In heterostructures is a promising material for photosensor and optoelectronic applications.

References

  1. 1.
    D. Jiang, T. Wang, Q. Xu, D. Li, S. Meng, M. Chen, Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl. Catal. B 201, 617–628 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Umadevi, N. Prithivikumaran, Electrical parameters of metal-doped n-CdO/p-Si heterojunction diodes. Phys. B: Condensed Matter 501, 123–128 (2016)CrossRefGoogle Scholar
  3. 3.
    I.S. Yahia, A.A.M. Farag, R. Jafer, J. Iqbal, H.Y. Zahran, S. Chusnutdinow, T. Wojtowicz, G. Karczewski, Electrical, photovoltaic and photosensitivity characteristics of p-ZnTe:N/CdTe:Mg/n-CdTe:I/GaAs for photodiode applications. Mater. Sci. Semicond. Process. 67, 33–40 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Onno, J. Wu, Q. Jiang, S. Chen, M. Tang, Y. Maidaniuk, M. Benamara et al., Al0. 2Ga0. 8As solar cells monolithically grown on Si and GaAs by MBE for III-V/Si tandem dual-junction applications. Energy Proc. 92, 661–668 (2016)CrossRefGoogle Scholar
  5. 5.
    A.A. Al-Ghamdi, M.S. Abd El-sadek, A.T. Nagat, F. El-Tantawy, Synthesis, electrical properties and transport mechanisms of thermally vacuum evaporated CdTe nanocrystalline thin films. Solid State Commun. 152(17), 1644–1649 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, B. Bouhafs, Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe. Phys. B: Condensed Matter 403(19–20), 3452–3458 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Prakasam, O. Viraphong, L. Teulé-Gay, R. Decourt, P. Veber, E.G. Víllora, K. Shimamura, Crystal growth and analysis of ohmic contact and magneto-optical isolator properties of cadmium manganese telluride. J. Cryst. Growth 318(1), 533–538 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Su, C. Lee, G.-C. Wang, T.-M. Lu, I.B. Bhat, CdTe/ZnTe/GaAs heterostructures for single-crystal CdTe solar cells. J. Electron. Mater. 43(8), 2895–2900 (2014)CrossRefGoogle Scholar
  9. 9.
    I.E. Cortes-Mestizo, E. Briones, C.M. Yee-Rendón, L. Zamora Peredo, L.I. Espinosa-Vega, R. Droopad, V.H. Méndez-García, Optical spectroscopy analysis of the near surface depletion layer in AlGaAs/GaAs heterostructures grown by MBE. J. Cryst. Growth 477, 59–64 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Gerhard, T. Naydenova, M. Baussenwein, C. Schumacher, C. Gould, L.W. Molenkamp, Growth and characterization of epitaxial NiMnSb/ZnTe/NiMnSb magnetic multilayers. J. Cryst. Growth 435, 46–49 (2016)CrossRefGoogle Scholar
  11. 11.
    K. Abderrafi, R. Ribeiro-Andrade, N. Nicoara, M.F. Cerqueira, M. GonzalezDebs, H. Limborço, P.M.P. Salomé et al., Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy. J. Cryst. Growth 475, 300–306 (2017)CrossRefGoogle Scholar
  12. 12.
    L.-C. Tung, G. Karczewski, Y.J. Wang, Unusual magneto-infrared modes in CdMnTe/CdMgTe quantum well structures. Phys. E: Low-Dimens. Syst. Nanostruct. 40(5), 1608–1610 (2008)CrossRefGoogle Scholar
  13. 13.
    V. Kolkovsky, Ph. D thesis, Planar Nanostructures Made of Diluted Magnetic Semiconductors Epitaxial Growth and Transport Properties, Institute of Physics Polish Academy of Science, Warsaw, Poland, 2008, p. 10Google Scholar
  14. 14.
    D. Zhang, Y. Liao, J. Li, T. Wen, L. Jin, X. Wang, J. Kolodzey, Effect of in-situ annealing on the structural and optical properties of GeSn films grown by MBE. J. Alloys Compd. 684, 643–648 (2016)CrossRefGoogle Scholar
  15. 15.
    I. Jum’h, M.S. Abd El-Sadek, H. Al-Taani, I.S. Yahia, G. Karczewski, Influence of illumination on the electrical properties of p-(ZnMgTe/ZnTe: N)/CdTe/n-(CdTe: I)/GaAs heterojunction grown by molecular beam epitaxy (MBE). J. Electron. Mater. 46(2), 1061–1066 (2017)CrossRefGoogle Scholar
  16. 16.
    I.S. Yahia, G.B. Sakr, T. Wojtowicz, G. Karczewski. p-ZnTe/n-CdMnTe/n-GaAs diluted magnetic diode for photovoltaic applications. Semicond. Sci. Technol. 25(9), 095001 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Hökelek, G.Y. Robinson, A comparison of Pd Schottky contacts on InP, GaAs and Si. Solid-State Electron. 24(2), 99–103 (1981)CrossRefGoogle Scholar
  18. 18.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, vol. 2 (Clarendon Press, Oxford, 1988), p. 35Google Scholar
  19. 19.
    Ş Altındal, S. Karadeniz, N. Tuğluoğlu, A. Tataroğlu, The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes. Solid-State Electronics 47(10), 1847–1854 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Soylu, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, The electrical characterization of ZnO/GaAs heterojunction diode. Phys. E: Low-Dimens. Syst. Nanostruct. 64, 240–245 (2014)CrossRefGoogle Scholar
  21. 21.
    O. Azim, I.S. Yahia, G.B. Sakr, Characterization of mono-crystalline silicon solar cell. Appl. Solar Energy 50(3), 146–155 (2014)CrossRefGoogle Scholar
  22. 22.
    E. Cuculescu, I. Evtodiev, E. Arama, M. Caraman, Optical and photoelectrical characteristics of GaSe (Cu)/oxide semiconductor heterojunction. Moldavian J. Phys. Sci. 7(1), 55–60 (2008)Google Scholar
  23. 23.
    A.A.M. Farag, I.S. Yahia, T. Wojtowicz, G. Karczewski, Influence of temperature and illumination on the electrical properties of p-ZnTe/n-CdTe heterojunction grown by molecular beam epitaxy. J. Phys. D: Appl. Phys. 43(21), 215102 (2010)CrossRefGoogle Scholar
  24. 24.
    K.S. Bindra, N. Suri, R. Thangaraj, Transient photoconductivity in amorphous Se70Sb20Ag10 thin films. J. Non-Cryst. Solids 353(13–15), 1446–1449 (2007)CrossRefGoogle Scholar
  25. 25.
    A.A.M. Farag, I.S. Yahia, E.G. El-Metwally, Influence of temperature, thickness and intensity of illumination on the capacitance-voltage and current-voltage characteristics of coplanar ZnTe thin films. J. Adv. Mater. 11(2), 204–212 (2009)Google Scholar
  26. 26.
    F. Yakuphanoglu, Photovoltaic properties of the organic–inorganic photodiode based on polymer and fullerene blend for optical sensors. Sensors Actuators A: Physical 141(2), 383–389 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Rose, Concepts in Photoconductivity and Allied Problems (Interscience Publishers, New York, 1963)Google Scholar
  28. 28.
    I.S. Yahia, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz, G. Karczewski, Photovoltaic characterization of n-CdTe/p-CdMnTe/GaAs diluted magnetic diode. Curr. Appl. Phys. 13(3), 537–543 (2013)CrossRefGoogle Scholar
  29. 29.
    D.P. Amalnerkar, Photoconducting and allied properties of CdS thick films. Mater. Chem, Phys 60(1), 1–21 (1999)CrossRefGoogle Scholar
  30. 30.
    L.C. Chen, M.-I. Lu, Magneto-optical multiplication effects in ZnO/SiO2/Si photodiodes. Script. Mater. 61(8), 781–784 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mining, Metallurgy, and Petroleum Engineering Department, Faculty of EngineeringAl-Azhar UniversityQenaEgypt
  2. 2.Nanomaterials Lab, Physics Department, Faculty of ScienceSouth Valley UniversityQenaEgypt
  3. 3.Institute of PhysicsPolish Academy of SciencesWarsawPoland
  4. 4.Advaned Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA) and Semiconductors Laboratory, Department of Physics, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations