Synthesis and low-temperature sensing property of the porous ZnCo2O4 nanosheets

  • Xinming Gao
  • Chunyan Li
  • Chunling ZhuEmail author
  • Qiuyun Ouyang
  • Xitian Zhang
  • Yujin ChenEmail author


Hydrogen sulfide even with low concentration in environment is very pernicious to the health, Therefore, the design of gas sensors for detecting H2S is highly desirable. In this work, porous spinel ZnCo2O4 nanosheets (NSs) were synthesized via a hydrothermal method and followed by the thermal treatment. Structural characterizations indicate that the porous NSs are composed of ~ 14 nm interconnected ZnCo2O4 nanoparticles. The porous spinel ZnCo2O4 NSs exhibit enhanced H2S sensing performance in comparison to Co3O4 NSs. The detection limit of the porous ZnCo2O4 NSs is down to 100 ppb H2S with a sensor response value of 1.32 even at relatively low operating temperature of 120 °C. Furthermore, the porous ZnCo2O4 NSs have fascinating selectivity and good long-term stability and relatively rapid response time. The gas sensing mechanism of the ZnCo2O4 NSs gas sensor is also discussed in terms of the effects of oxygen vacancies. In view of the exciting gas-sensing properties and facile preparation method, the porous ZnCo2O4 NSs are ideal candidates for the H2S sensors.



This work is supported by the National Natural Science Foundation of China (Grant No. 51572051), the Natural Science Foundation of Heilongjiang Province (E2016023), the Fundamental Research Funds for the Central Universities (HEUCF201708 and HEUCFG201807), and also the Open Project Program (PEBM 201703 and PEBM201704) of Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, and also the 111 project (B13015) of Ministry Education of China to the Harbin Engineering University.


  1. 1.
    H.D. Li, Q.C. Yao, J.L. Fan, N. Jiang, J.Y. Wang, J. Xia, X.J. Peng, Chem. Commun. 51, 16225 (2015)CrossRefGoogle Scholar
  2. 2.
    X.Y. Yang, Y.Y. Zhang, X.D. Hao, Y. Song, X.S. Liang, F.M. Liu, F.M. Liu, P. Sun, Y. Gao, X. Yan, G.Y. Lu, Sens. Actuators B Chem. 273, 635 (2018)CrossRefGoogle Scholar
  3. 3.
    R. Li, C. Warneke, M. Graus, R. Field, F. Geiger, P.R. Veres, J. Soltis, S.M. Li, S.M. Murphy, C. Sweeney, G. Pétron, J.M. Roberts, J.D. Gouw, Atmos. Meas. Tech. 7, 3597 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Saha, D. Kand, P. Talukdar, Org. Biomol. Chem. 11, 8166 (2013)CrossRefGoogle Scholar
  5. 5.
    L.L. Sui, Y.M. Xu, X.F. Zhang, X.L. Cheng, S. Gao, H. Zhao, Z. Cai, L.H. Huo, Sens. Actuators B Chem. 208, 406 (2015)CrossRefGoogle Scholar
  6. 6.
    W.S. Kim, H.C. Kim, S.H. Hong, J. Nanopart. Res. 12, 1889 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Kim, K. Yong, J. Phys. Chem. C 115, 7218 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, J. Phys. Chem. C 115, 12763 (2011)CrossRefGoogle Scholar
  9. 9.
    J.M. Liu, W.W. Wu, S. Bai, Y. Qin, ACS Appl. Mater. Interfaces 3, 4197 (2011)CrossRefGoogle Scholar
  10. 10.
    V.X. Hien, J.L. You, K.M. Jo, S.Y. Kim, J.H. Lee, J.J. Kim, Y.W. Heo, Sens. Actuators B Chem. 202, 330 (2014)CrossRefGoogle Scholar
  11. 11.
    S.Z. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, J. Am. Chem. Soc. 134, 4905 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Maiti, J.A. Rodriguez, M. Law, P. Kung, J.R. McKinney, P.D. Yang, Nano Lett. 3, 1025 (2003)CrossRefGoogle Scholar
  13. 13.
    V. Nagarajan, R. Chandiramouli, J. Inorg. Organomet. Polym. 26, 394 (2016)CrossRefGoogle Scholar
  14. 14.
    W.H. Peng, C.L. Zhu, S.M. Zhu, F. Yao, Y. Li, D. Zhan, J. Mater. Sci. 48, 4336 (2013)CrossRefGoogle Scholar
  15. 15.
    V. Balouria, S. Samanta, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Sens. Actuators B Chem. 176, 38 (2013)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Lu, W.W. Zhan, Y. He, Y.T. Wang, X.J. Kong, Q. Kuang, Z.X. Xie, L.S. Zheng, ACS Appl. Mater. Interfaces 6, 4186 (2014)CrossRefGoogle Scholar
  17. 17.
    S.T. Navale, C. Liu, P.S. Gaikar, V.B. Patil, R.U.R. Sagar, B. Du, R.S. Mane, F.J. Stadler, Sens. Actuators B Chem. 245, 524 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Luyo, R. Ionescu, L.F. Reyes, Z. Topalian, W. Estrada, E. Llobet, C.G. Granqvist, P. Heszler, Sens. Actuators B Chem. 138, 14 (2009)CrossRefGoogle Scholar
  19. 19.
    M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, J. Am. Chem. Soc. 133, 5296 (2013)CrossRefGoogle Scholar
  20. 20.
    D.H. Zhang, Z.Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei, C.W. Zhou, Nano Lett. 4, 1919 (2004)CrossRefGoogle Scholar
  21. 21.
    S. Moon, N.M. Vuong, D. Lee, D. Kim, H. Lee, D. Kim, S.K. Hong, S.G. Yoon, Sens. Actuators B Chem. 222, 166 (2016)CrossRefGoogle Scholar
  22. 22.
    W.T. Koo, S.J. Choi, J.S. Jang, I.D. Kim, Sci. Rep. 7, 45074 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Mun, S. Park, S. An, C. Lee, H.W. Kim, Ceram. Int. 39, 8615 (2013)CrossRefGoogle Scholar
  24. 24.
    T. Liu, J.Y. Liu, Q. Liu, D.L. Song, H.S. Zhang, H.Q. Zhang, J. Wang, Nanoscale 7, 19714 (2015)CrossRefGoogle Scholar
  25. 25.
    C.R. Mariappan, R. Kumar, G. Vijaya, Prakash, RSC Adv. 5, 26843 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Zhou, J.Y. Liu, C. Wang, P. Sun, X.L. Hu, X.W. Li, K. Shimanoe, N. Yamazoe, G.Y. Lu, Sens. Actuators B Chem. 206, 57 (2015)Google Scholar
  27. 27.
    K.B. Gawande, S.B. Gawande, S.R. Thakare, V.R. Mate, S.R. Kadam, B.B. Kale, M.V. Kulkarni, RSC Adv. 5, 40429 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Joshi, L.F. da Silva, H. Jadhav, J.C. M’Peko, B.B.M. Torres, K. Aguir, V.R. Mastelaroa, O.N. Oliveira Jr., RSC Adv. 6, 92655 (2016)CrossRefGoogle Scholar
  29. 29.
    F.D. Qu, H.F. Jiang, M.H. Yang, Mater. Lett. 190, 75 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Sharma, P. Bhojane, A.K. Rana, Y. Kumar, P.M. Shirage, Script. Mater. 128, 65 (2017)CrossRefGoogle Scholar
  31. 31.
    K.T. Alali, Z.T. Lu, H.S. Zhang, J.Y. Liu, Q. Liu, R.M. Li, K. Aljebawi, J. Wang, Inorg. Chem. Front. 4, 1219 (2017)CrossRefGoogle Scholar
  32. 32.
    X. Zhou, X.W. Li, H.B. Sun, P. Sun, X.S. Liang, F.M. Liu, X.L. Hu, G.Y. Lu, ACS Appl. Mater. Interfaces 7, 15414 (2015)CrossRefGoogle Scholar
  33. 33.
    P.Y. Lee, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, J. Nanopart. Res. 8, 29 (2006)CrossRefGoogle Scholar
  34. 34.
    B. Chi, J.B. Li, X.Z. Yang, H. Lin, N. Wang, Electrochim. Acta 50, 2059 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Wang, T. Qiu, X. Chen, Y.L. Lu, W.S. Yang, J. Power Sources 268, 341 (2014)CrossRefGoogle Scholar
  36. 36.
    T.W. Kim, M.A. Woo, M. Regis, K.S. Choi, J. Phys. Chem. Lett. 5, 2370 (2014)CrossRefGoogle Scholar
  37. 37.
    Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, Adv. Mater. 28, 3777 (2016)CrossRefGoogle Scholar
  38. 38.
    G. Zhou, J. Zhu, Y.J. Chen, L. Mei, X.C. Duan, G.H. Zhang, L.B. Chen, T.H. Wang, B.G. Lu, Electrochim. Acta 123, 450 (2014)CrossRefGoogle Scholar
  39. 39.
    K. Karthikeyan, D. Kalpana, N.G. Renganathan, Ionics 15, 107 (2009)CrossRefGoogle Scholar
  40. 40.
    S.B. Wang, J. Pu, Y. Tong, Y.Y. Cheng, Y. Gao, Z.H. Wang, J. Mater. Chem. A 2, 5434 (2014)CrossRefGoogle Scholar
  41. 41.
    T.F. Hung, S.G. Mohamed, C.C. Shen, Y.Q. Tsai, W.S. Chang, R.S. Liu, Nanoscale 5, 12115 (2013)CrossRefGoogle Scholar
  42. 42.
    G.X. Gao, H.B. Wu, B.T. Dong, S.J. Ding, X.W. Lou, Adv. Sci. 2, 1400014 (2015)CrossRefGoogle Scholar
  43. 43.
    X. Cao, Y. Yang, A.J. Li, Nanomaterials 8, 377 (2018)CrossRefGoogle Scholar
  44. 44.
    Y.Q. Zhu, C.B. Cao, J.T. Zhang, X.Y. Xu, J. Mater. Chem. A 3, 9556 (2015)CrossRefGoogle Scholar
  45. 45.
    M.M. Zhen, L. Liu, C. Wang, Microporous Mesoporous Mater. 246, 130 (2017)CrossRefGoogle Scholar
  46. 46.
    Y.J. Chen, X.M. Gao, X.P. Di, Q.Y. Ouyang, P. Gao, L.H. Qi, C.Y. Li, C.L. Zhu, ACS Appl. Mater. Interfaces 5, 3267 (2013)CrossRefGoogle Scholar
  47. 47.
    W.J. Xu, F.L. Lyu, Y.C. Bai, A.Q. Gao, J. Feng, Z.X. Cai, Y.D. Yin, Nano Energy 43, 110 (2018)CrossRefGoogle Scholar
  48. 48.
    M. Ma, K. Zhang, P. Li, M.S. Jung, M.J. Jeong, J.H. Park, Angew. Chem. Int. Ed. 55, 11819 (2016)CrossRefGoogle Scholar
  49. 49.
    N.G. Cho, I.S. Hwang, H.G. Kim, J.H. Lee, I.D. Kim, Sens. Actuators B Chem. 155, 366 (2011)CrossRefGoogle Scholar
  50. 50.
    S.T. Navale, C.S.T. Liu, P.S. Gaikar, V.B. Patil, R.U.R. Sagar, B. Du, R.S. Mane, F.J. Stadler, Sens. Actuators B Chem. 245, 524 (2017)CrossRefGoogle Scholar
  51. 51.
    J.C. Fu, C.H. Zhao, J.L. Zhang, Y. Peng, E.Q. Xie, ACS Appl. Mater. Interfaces 5, 7410 (2013)CrossRefGoogle Scholar
  52. 52.
    M. Epifani, E. Comini, R. Díaz, T. Andreu, A. Genc, J. Arbiol, P. Siciliano, G. Faglia, J.R. Morante, ACS Appl. Mater. Interfaces 6, 16808 (2014)CrossRefGoogle Scholar
  53. 53.
    S. Deepa, K.P. Kumari, B. Thomas, Ceram. Int. 43, 17128 (2017)CrossRefGoogle Scholar
  54. 54.
    W. Kim, M. Choi, K. Yong, Sens. Actuators B Chem. 209, 3989 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of In-Fiber Integrated OpticsMinistry of Education and College of Science, Harbin Engineering UniversityHarbinChina
  2. 2.College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina
  3. 3.Key Laboratory for Photonic and Electronic Bandgap Materials, School of Physics and Electronic EngineeringMinistry of Education, Harbin Normal UniversityHarbinChina

Personalised recommendations