Improving the grain size of \(\text {Cu}_{2}\text {ZnSnS}_{4}\) thin films by annealing thermally evaporated Cu–ZnS–Sn–S precursors

  • U. Chalapathi
  • M. A. Scarpulla
  • Si-Hyun ParkEmail author
  • S. Uthanna
  • V. Sundara Raja


In this study, \(\text {Cu}_{2}\text {ZnSnS}_{4}\) (CZTS) thin films were grown on Mo-coated glass substrates by thermal evaporation of the precursor layers followed by annealing in a graphite box. The effect of annealing on the grain growth and morphology of the CZTS thin films was investigated at two different temperatures and \(\text {S}_{2}\) partial pressures. X-ray diffraction and Raman spectroscopy analyses confirmed the formation of CZTS films with a kesterite structure with (112) preferred orientation. The grain growth was significantly enhanced by annealing the stacks at \(550\,^\circ {\text{C}}\) for 30 min at a \(\text {S}_{2}\) partial pressure of \(1.2 \times 10^{4}\,\text{Pa}\). The grain size was found to be in the range of \(1.0{-}2.0\,\upmu \text {m}\). The same grain size was obtained by carrying out the annealing at \(580\,^\circ {\text{C}}\) and a \(\text {S}_{2}\) partial pressure of \(1.96 \times 10^{4}\,\text{Pa}\) just for 10 min. This grain size was much larger than the grain size of CZTS films obtained from annealing the stacks in two-zone tubular furnaces.



One of the authors Dr. U. Chalapathi, is grateful to the Indo-US Science and Technology Forum (IUSSTF) and Department of Science and Technology (DST), India, for providing Bhaskara Advanced Solar Energy (BASE) Internship to carry out this research work. Dr. S. Uthanna is thankful to the University Grants Commission, New Delhi, India, for the award of UGC-BSR Faculty Fellowship.


  1. 1.
    C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, N. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M. Green, X. Hao, Nat. Energy (2018). Google Scholar
  2. 2.
    G. Chen, W. Wang, J. Zhang, S. Chen, Z. Huang, R. Jian, J. Renew. Sust. Energy 9(1), 013501 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Huang, S. Wei, D. Pan, A.C.S. Appl, Mater. Interfaces 10(41), 35069 (2018)CrossRefGoogle Scholar
  4. 4.
    H. Yoo, J. Kim, Thin Solid Films 518(22), 6567 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Thin Solid Films 517(4), 1457 (2008)CrossRefGoogle Scholar
  6. 6.
    S.W. Shin, S. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells 95(12), 3202 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Lin, S. Ikeda, W. Septina, Y. Kawasaki, T. Harada, M. Matsumura, Sol. Energy Mater. Sol. Cells 120, 218 (2014)CrossRefGoogle Scholar
  8. 8.
    J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang, J. Chu, Appl. Surf. Sci. 264, 133 (2013)CrossRefGoogle Scholar
  9. 9.
    T. Hamada, A. Fukuyama, F. Jiang, S. Ikeda, T. Ikari, Phys. Status Solidi (c) 12, 725 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Ge, Y. Wu, C. Zhang, S. Zuo, J. Jiang, J. Ma, P. Yang, J. Chu, Appl. Surf. Sci. 258(19), 7250 (2012)CrossRefGoogle Scholar
  11. 11.
    K. Maeda, K. Tanaka, Y. Nakano, H. Uchiki, Jpn. J. Appl. Phys. 50(5S2), 05FB08 (2011)CrossRefGoogle Scholar
  12. 12.
    M.I. Amal, K.H. Kim, Thin Solid Films 534, 144 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Emrani, P. Vasekar, C.R. Westgate, Sol. Energy 98, 335 (2013)CrossRefGoogle Scholar
  14. 14.
    O.P. Singh, N. Muhunthan, V.N. Singh, B.P. Singh, Adv. Mater. Lett. 6(1), 2 (2015)CrossRefGoogle Scholar
  15. 15.
    U. Chalapathi, S. Uthanna, V. Sundara Raja, Sol. Energy Mater. Sol. Cells 132, 476 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Zhang, Z. Su, L. Zhao, C. Yan, F. Liu, H. Cui, X. Hao, Y. Liu, Appl. Phys. Lett. 104(14), 141101 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Alvarez, S. Exarhos, L. Mangolini, Mater. Lett. 165, 41–44 (2015)CrossRefGoogle Scholar
  18. 18.
    J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, J. Power Sources 273, 600 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Sol. Energy Mater. Sol. Cells 95(10), 2855 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Sousa, A. Da Cunha, P.M. Salome, P. Fernandes, J. Teixeira, J. Leitão, Thin Solid Films 535, 27 (2013)CrossRefGoogle Scholar
  21. 21.
    V. Kosyak, N.M. Amiri, A. Postnikov, M.A. Scarpulla, J. Appl. Phys. 114(12), 124501 (2013)CrossRefGoogle Scholar
  22. 22.
    B.D. Cullity, Elements of X-ray Diffraction (Addison Wesley, London, 1956)Google Scholar
  23. 23.
    M. Himmrich, H. Haeuseler, Spectrochim. Acta A 47(7), 933 (1991)CrossRefGoogle Scholar
  24. 24.
    A.J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vac. Sci. Technol. A 29(5), 051203 (2011)CrossRefGoogle Scholar
  25. 25.
    X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V. Yukhymchuk, M.Y. Valakh, A. Pérez-Rodríguez, J.R. Morante, J. Alloys Compd. 539, 190 (2012)CrossRefGoogle Scholar
  26. 26.
    D. Dumcenco, Y.S. Huang, Opt. Mater. 35(3), 419 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • U. Chalapathi
    • 1
    • 3
  • M. A. Scarpulla
    • 2
  • Si-Hyun Park
    • 3
    Email author
  • S. Uthanna
    • 1
  • V. Sundara Raja
    • 1
  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.Materials Science & Engineering and Electrical & Computer Engineering DepartmentsUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Electronic EngineeringYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations