Field emission investigations of solvothermal synthesized and soaked rutile-TiO2 nanostructures

  • Ajinkya Bhorde
  • Somnath Bhopale
  • Ravindra Waykar
  • Shruthi Nair
  • Haribhau Borate
  • Subhash Pandharkar
  • Adinath Funde
  • Mahendra More
  • Sandesh JadkarEmail author


In present work we report synthesis of rutile-TiO2 by using a simple solvothermal method. The formation of pure single phase rutile-TiO2 has been confirmed by X-ray diffraction (XRD) and Raman spectroscopy analysis. The XRD analysis revealed that as-prepared and soaked-TiO2 has pure rutile phase with tetragonal crystal structure. The field emission scanning electron microscopy and high resolution transmission electron microscopy analysis shows that as-prepared TiO2 has nano-rods like morphology whereas soaked-TiO2 has nano-flowers like morphology with atomically sharp edges. The UV–Visible spectroscopy analysis showed that as-prepared and soaked rutile-TiO2 nano-structures have absorption edge in the visible range and having band gap of ~ 3.58 eV. The field emission (FE) properties of as-prepared and soaked rutile-TiO2 nano-structures were investigated and it was observed that as-prepared and soaked rutile-TiO2 display excellent FE properties with low turn-on field (~ 4.8 V/µm for 10 µA/cm2), maximum current density [~ 444 µA/cm2 (as-prepared) and 508 µA/cm2 (soaked)] and superior current stability (~ 3 h for ~ 1 µA). The obtained results show that the rutile-TiO2 nanostructures can be useful for practical applications in vacuum nano/microelectronic devices.



Ajinkya Bhorde thankful to Department of Science and Technology (DST), Government of India for INSPIRE Ph. D. fellowship. Ravindra waykar, Shruthi Nair and Subhash Pandharkar are thankful to the and Ministry of New and Renewable Energy (MNRE), Government of India for the financial support under National Renewable Energy Fellowship (NREF) program. Haribhau Borate is thankful to University Grants Commission, New Delhi for financial support under Faculty Improvement Program (FIP) for college teachers. One of the authors Sandesh Jadkar is thankful to University Grants Commission (UPE program), New Delhi and Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi for special financial support.


  1. 1.
    W. Guo, T. Liu, L. Huang, Mater. Lett. 65, 3384 (2011)CrossRefGoogle Scholar
  2. 2.
    X. Fang, J. Yan, L. Hu, H. Liu, P. Lee, Adv. Funct. Mater. 22, 1613 (2012)CrossRefGoogle Scholar
  3. 3.
    L. You, Y. Sun, J. Ma, Y. Guan, Sens. Actuators B 157, 401 (2011)CrossRefGoogle Scholar
  4. 4.
    L. Li, N. Koshizaki, J. Mater. Chem. 20, 2972–2978 (2010)Google Scholar
  5. 5.
    B. Liu, E. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)CrossRefGoogle Scholar
  6. 6.
    V. Subramanian, E.W. Eduardo, V.K. Prashant, J. Am. Chem. Soc. 126, 4943 (2004)CrossRefGoogle Scholar
  7. 7.
    T. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D. Bahnemann, Chem. Mater. 22, 2050 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Patil, R. Devan, Y. Liou, Y. Ma, Sol. Energy Mater. Sol. Cells 147, 240 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Devan, Y. Ma, R. Patil, L. Schmidt-Mende, RSC Adv. 6, 62218 (2016)CrossRefGoogle Scholar
  10. 10.
    C. Kim, R. Buonsanti, R. Yaylian, D. Milliron, J. Cabana, Adv. Energy Mater. 3, 1286 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Gong, Y. Li, Z. Hu, Z. Zhou, J. Phys. Chem. C .114, 9970 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Ochiai, A. Fujishima, J. Photochem. Photobiol. C 13, 247 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Lu, H. Yu, S. Chen, X. Quan, H. Zhao, Environ. Sci. Technol. 46, 1724 (2012)CrossRefGoogle Scholar
  14. 14.
    T. Zheng, Z. Tian, B. Su, Z. Lei, Ind. Eng. Chem. Res. 51, 1391 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Singh, N. Jadhav, Int. J. Electroact. Mater. 3, 1–5 (2015)Google Scholar
  16. 16.
    G. Wilson, A. Matijasevich, D. Mitchell, J. Schulz, G. Will, Langmuir 22, 2016 (2006)CrossRefGoogle Scholar
  17. 17.
    N. Khatun, S. Tiwari, C. Vinod, C. Tseng, S. Liu, S. Biring, S. Sen, J. Appl. Phys. 123, 245702 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. Ding, X. Hu, G. Lu, P. Yue, Langmuir. 16, 6216 (2000)CrossRefGoogle Scholar
  19. 19.
    S. Muduli, W. Lee, V. Dhas, Appl. Mater. Interfaces 1(9), 2030 (2009)CrossRefGoogle Scholar
  20. 20.
    R. Almeida, A. Marques, J. Mater. Sci. Mater. Electron. 20, 307 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Kim, J. Lee, N. Yantara, P. Boix, S. Kulkarni, S. Mhaisalkar, M. Gratzel, N. Park, Nano Lett. 13, 2412 (2013)CrossRefGoogle Scholar
  22. 22.
    W. Junga, N. Kwaka, T. Hwanga, K. Yi, Appl. Surf. Sci. 261, 343 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacohen, A. Gedanken, Chem. Commun. 24, 2616–2617 (2001)Google Scholar
  24. 24.
    G. Wang, G. Li, Eur. J. Phys. D 24, 355 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Liao, C. Wang, J. Chen, X. Zhang, Y. Li, J. Wang, Mater. Res. Bull. 70, 988 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Asim, S. Ahmadi, M. Alghoul, F. Hammadi, K. Saeedfar, K. Sopian, Int. J. Photoenergy 21, 518156 (2014)Google Scholar
  27. 27.
    W. Li, C. Ni, H. Lin, C. Huang, S. Shah, J. Appl. Phys. 96, 6663 (2004)CrossRefGoogle Scholar
  28. 28.
    N. Jagtap, M. Bhagwat, P. Awati, V. Ramaswamy, Thermochim. Acta 37, 427 (2005)Google Scholar
  29. 29.
    D. Hanaor, C. Sorrell, J. Mater. Sci. 46, 855 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Zavala, S. Morales, M. Santos, Heliyon, 3,00456 (2017)Google Scholar
  31. 31.
    C. Brinker, G. Scherer, S.-G. Science, The physics and chemistry of Sol–Gel processing (Academic Press Inc., USA, 1990)Google Scholar
  32. 32.
    B. Wang, D. Xue, Y. Shi, F. Xue, Titania 1D nanostructured materials: synthesis, properties and applications, In Nanorods, nanotubes and nanomaterials research progress, ed. by W. Prescott, A. Schwartz (New Nova Science Publishers Inc., New York, 2008), pp. 163–201Google Scholar
  33. 33.
    Y. Wang, G. Hu, X. Duan, H. Sun, Q. Xue, Chem. Phy. Lett. 365, 427 (2002)CrossRefGoogle Scholar
  34. 34.
    R. Shannon, J. Pask, J. Am. Ceram. Soc. 48, 391 (1965)CrossRefGoogle Scholar
  35. 35.
    M. Finnegan, H. Zhang, J. Banfield, Chem. Mater. 20, 3443 (2008)CrossRefGoogle Scholar
  36. 36.
    F. Meldrum, H. Colfen, Chem. Rev. 108, 4332 (2008)CrossRefGoogle Scholar
  37. 37.
    M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Chem. Mater. 14, 1974 (2002)CrossRefGoogle Scholar
  38. 38.
    B. Cullity, S. Stock, Elements of X-ray Diffraction, 3rd ed. (Princeton Hall, New Jersey, 2001)Google Scholar
  39. 39.
    Y. Xing, S. Wang, B. Fang, G. Song, D. Wilkinson, S. Zhang, J. Power Sources 385, 10 (2018)CrossRefGoogle Scholar
  40. 40.
    Y. Yoon, J. Park, Nanotechnology 29, 165705 (2018)CrossRefGoogle Scholar
  41. 41.
    G. Chen, J. Chen, Z. Song, C. Srinivasakannan, J. Peng, J. Alloys Compd. 585, 75 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Phys.Chem. Chem. Phys. 15, 10978 (2013)CrossRefGoogle Scholar
  43. 43.
    Y. Baoa, Q. Kang, C. Jian, Z. Ma, Mater. Lett. 214, 272 (2018)CrossRefGoogle Scholar
  44. 44.
    M. Patel, A. Chavada, I. Mukhopadhyay, J. Kim, A. Ray, Nanoscale 8, 2293 (2016)CrossRefGoogle Scholar
  45. 45.
    N. Khatun, P. Anita, D. Rajput, S. Bhattacharya, S. Jha, S. Brining, S. Sen, Ceram. Int. 43, 14128 (2017)CrossRefGoogle Scholar
  46. 46.
    R. Devan, Y. Ma, M. More, R. Khare, V. Antad, R. Patil, V. Thakare, R. Dhayal, L. Mendeg, RSC Adv. 6, 98722 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Liang, G.M. Zhang, ACS Appl. Mater. Interfaces 4, 6053 (2012)CrossRefGoogle Scholar
  48. 48.
    G. Rothenberger, D. Fitzmaurice, M. Graetzel, J. Phys. Chem. 96, 5983 (1992)CrossRefGoogle Scholar
  49. 49.
    A. Datta, P. Chavan, F. Sheini, M. More, D. Joag, A. Patra, Cryst. Growth Des. 9, 4157 (2009)CrossRefGoogle Scholar
  50. 50.
    Y. Alivov, S. Molloi, J. Appl. Phys. 108, 024303 (2010)CrossRefGoogle Scholar
  51. 51.
    J. Chen, C. Wang, B. Ma, Y. Li, J. Wang, R. Guo, W. Liu, Thin Solid Films 517, 4390 (2009)CrossRefGoogle Scholar
  52. 52.
    P. Bankar, M. Pawar, A. Pawbake, S. Warule, D. Late, M. More, RSC Adv. 6, 95092 (2016)CrossRefGoogle Scholar
  53. 53.
    P. Chikate, P. Bankar, Y. Ma, S. Patil, M. More, D. Phase, P. Shirage, R. Devan, RSC Adv. 8, 21664 (2018)CrossRefGoogle Scholar
  54. 54.
    M. Choi, Z. Zhang, J. Chen, Z. Deng, K. Yong, RSC Adv. 5, 19470 (2015)CrossRefGoogle Scholar
  55. 55.
    J. Wu, H. Shih, W. Wu, Chem. Phys. Lett. 413, 490 (2005)CrossRefGoogle Scholar
  56. 56.
    G. Liu, F. Li, G. Lu, D. Wang, D. Tang, C. Liu, X. Ma, H. Cheng, Nanotechnology 19, 025606 (2008)CrossRefGoogle Scholar
  57. 57.
    H. Pan, X. Qiu, I. Ivanov, H. Meyer, W. Wang, W. Zhu, M. Paranthaman, Z. Zhang, G. Eres, B. Gu, Appl. Catal. B 93, 90 (2009)CrossRefGoogle Scholar
  58. 58.
    C. Wang, J. Chen, L. Wang, Y. Kang, D. Li, F. Zhou, Thin Solid Films 520, 5036 (2012)CrossRefGoogle Scholar
  59. 59.
    S. Suryawanshi, S. Warule, S. Patil, K. Patil, M. More, ACS Appl. Mater. Interfaces 6, 2018 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ajinkya Bhorde
    • 1
  • Somnath Bhopale
    • 2
  • Ravindra Waykar
    • 1
  • Shruthi Nair
    • 1
  • Haribhau Borate
    • 1
  • Subhash Pandharkar
    • 1
  • Adinath Funde
    • 1
  • Mahendra More
    • 2
  • Sandesh Jadkar
    • 2
    Email author
  1. 1.School of Energy StudiesSavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations