Advertisement

Structural, thermal and electrical properties of silk fibroin–silver nanoparticles composite films

  • C. S. ShivanandaEmail author
  • B. Lakshmeesha Rao
  • Sangappa
Article
  • 6 Downloads

Abstract

In recent years, the biosynthesis of nanoparticles is gaining much importance as it uses non-toxic chemicals and thereby, reduces environmental hazards. The bio-synthesized nanoparticles finds application in various biomedical fields because of its biocompatibility. Natural biomaterials and biopolymers have excellent physiochemical properties to reduce bulk materials into nanoparticles. Bombyx mori silk fibroin is such a natural biopolymer and is used as a bio-template to produce silver nanoparticles (AgNPs). Silver nitrate is added to the prepared silk fibroin (SF) solution at different combinations to obtain the AgNPs. The SF–AgNPs colloidal solution is used to prepare free standing biopolymer–nanocomposite (SF–AgNPs BNCs) films. The prepared SF–AgNPs BNCs were characterized with XRD, FT-IR, SEM, DSC, and TGA–DTG to study its physical properties and application, AC conductivity, and dielectric properties. It was observed that AgNPs changed the structural, thermal, dielectric, and AC conductivity of the SF films. The SF films possess good conductivity with the presence of AgNPs, hence can be used in bio-sensor and implantable thermo electric wireless switching applications.

References

  1. 1.
    F.G. Omenetto, D.L. Kaplan, A new route for silk. Nat. Photonics 2, 641–643 (2008)CrossRefGoogle Scholar
  2. 2.
    X. Wang, J.A. Kluge, G.G. Leisk, D.L. Kaplan, Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29, 1054–1064 (2008)CrossRefGoogle Scholar
  3. 3.
    U.J. Kim, J. Park, C. Li, H.J. Jin, R. Valluzzi, D.L. Kaplan, Structure and properties of silk hydrogels. Biomacromolecules 5, 786–792 (2004)CrossRefGoogle Scholar
  4. 4.
    H.J. Jin, S.V. Fridrikh, G.C. Rutledge, D.L. Kaplan, Electrospinning bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3, 1233–1239 (2002)CrossRefGoogle Scholar
  5. 5.
    H.J. Jin, J. Park, V. Karageorgiou, U.J. Kim, R. Valluzzi, P. Cebe, D.L. Kaplan, Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 15, 1241–1247 (2005)CrossRefGoogle Scholar
  6. 6.
    X. Wang, H.J. Kim, P. Xu, A. Matsumoto, D.L. Kaplan, Biomaterials coatings by stepwise deposition of silk fibroin. Langmuir 21, 11335–11341 (2005)CrossRefGoogle Scholar
  7. 7.
    C. Jiang, X. Wang, R. Gunawidjaja, Y.H. Lin, M.K. Gupta, D.L. Kaplan, R.R. Naik, V.V. Tsukruk, Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17, 2229–2237 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Perry, A. Gopinath, D.L. Kaplan, L.D. Negro, F.D. Omenetto, Nano-and micropatterning of optically transparent mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008)CrossRefGoogle Scholar
  9. 9.
    B.D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D.L. Kaplan, F.G. Omenetto, Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214–1220 (2008)CrossRefGoogle Scholar
  10. 10.
    X. Li, W. Shi, X. Yu, J. Yu, Performance improvement of organic field effect transistor based nitrogen dioxide gas sensor using biocompatible PMMA/silk fibroin bilayer dielectric. J. Mater. Sci.: Mater. Electron. 26, 7948–7954 (2015)Google Scholar
  11. 11.
    Y. Shen, M.A. Johnson, D.C. Martin, Microstructural characterization of Bombyxmori silk fibers. Macromolecules 31, 8857–8864 (1998)CrossRefGoogle Scholar
  12. 12.
    E. Siebert, S. Rosini, R. Bouchet, G. Vitter, Mixed potential type hydrogen sensor. Ionics 9, 168–175 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Sagnella, C. Chieco, N. Di Virgilio, S. Toffanin, T. Posati, A. Pistone, S. Bonetti, M. Muccini, G. Ruani, V. Benfenati, F. Rossi, R. Zamboni, Bio-doping of regenerated silk fibroin solution and films: a green route for biomanufacturing. RSC Adv. 4, 33687–33694 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Capelli, J.J. Amsden, G. Generali, S. Toffanin, V. Benfenati, M. Muccini, D.L. Kaplan, F.G. Omenetto, R. Zamboni, Integration of silk protein in organic and light-emitting transistors. Org. Electron. 12, 1146–1151 (2011)CrossRefGoogle Scholar
  15. 15.
    D.H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, D.L. Kaplan, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)CrossRefGoogle Scholar
  16. 16.
    K. Tsioris, G.E. Tilburey, A.R. Murphy, P. Domachuk, D.L. Kaplan, F.G. Omenetto, Functionalized-silk-based active optofluidic devices. Adv. Funct. Mater. 20, 1083–1089 (2010)CrossRefGoogle Scholar
  17. 17.
    M. De, P.S. Ghosh, V.M. Rotello, Applications of nanoparticles in biology. Adv. Mater. 20, 4225–4241 (2008)CrossRefGoogle Scholar
  18. 18.
    S.I. Sadovnikv, Y.V. Kuznetsova, A.A. Rempel, Ag2S silver sulphide nanoparticles and colloidal solutions: synthesis and properties. Nano-Struct. Nano-Object. 7, 81–91 (2016)CrossRefGoogle Scholar
  19. 19.
    R.L. Brutchey, D.E. Morse, Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem. Rev. 108, 4915–4934 (2008)CrossRefGoogle Scholar
  20. 20.
    M.B. Dickerson, K.H. Sandhage, R.R. Naik, Protein and peptide-directed syntheses of inorganic materials. Chem. Rev. 108, 4935–4978 (2008)CrossRefGoogle Scholar
  21. 21.
    C.S. Shivananda, S. Asha, R. Madhukumar, S. Satish, B. Narayana, K. Byrappa, Y. Wang, Y. Sangappa, Biosynthesis of colloidal silver nanoparticles: their characterization and potential antibacterial activity. Macromol. Res. 24, 684–690 (2016)CrossRefGoogle Scholar
  22. 22.
    C.S. Shivananda, R. Madhukumar, B. Narayana, K. Byrappa, P. Renu, Y. Wang, Y. Sangappa, Preparation and characterisation of silk fibroin–silver nanoparticles (SF–AgNPs) composite films. Mater. Res. Innov. 21, 210–214 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Asha, Y. Sangappa, G. Sanjeev, Optical properties of electron irradiated Bombyx mori silk fibroin films. J. Opt. 45, 66–72 (2016)CrossRefGoogle Scholar
  24. 24.
    M.I. Qadir, A. Kauling, L. Calabria, T. Grehl, J. Dupont, Fabrication of naked silver nanoparticles in functionalized ionic liquids. Nano-Struct. Nano-Object. 14, 92–97 (2018)CrossRefGoogle Scholar
  25. 25.
    Z. Wang, X. Liang, T. Zhao, Y. Hu, P. Zhu, R. Sun, Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. J. Mater. Sci.: Mater. Electron. 28, 16939–16947 (2017)Google Scholar
  26. 26.
    N. Bhardwaj, R. Rajkhowa, X. Wang, D. Devi, Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications. Int. J. Biol. Macromol. 81, 31–40 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Gole, C. Dash, V. Ramakrishnan, S.R. Sainkar, A.B. Mandale, M. Rao, M. Sastry, Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17, 1674–1679 (2001)CrossRefGoogle Scholar
  28. 28.
    Q. Dong, H.L. Su, D. Zhang, In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J. Phys. Chem. B 109, 17429–17434 (2005)CrossRefGoogle Scholar
  29. 29.
    L. Baia, M. Baia, W. Kiefer, J. Popp, S. Simon, Structural and morphological properties of silver nanoparticles-phosphate glass composites. Chem. Phys. 327, 63–69 (2006)CrossRefGoogle Scholar
  30. 30.
    Q. Lu, X. Hu, X. Wang, J.A. Kluge, S. Lu, P. Cebe, D.L. Kaplan, Water-insoluble silk films with silk I structure. Acta Biomater. 6, 1380–1387 (2010)CrossRefGoogle Scholar
  31. 31.
    Z. Zheng, Y. Wei, S. Yan, M. Li, Preparation of porous silk fibroin materials cross-linked by carbodiimide (EDC). J. Fiber Bioeng. Inform. 2, 162–167 (2009)CrossRefGoogle Scholar
  32. 32.
    B.L. Rao, Y. Sangappa, Effect of gamma irradiation on HPMC/ZnO nanocomposite films. Radiat. Eff. Defect Solid 170, 501–509 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Vadivel, R. Ramesh Babu, K. Krishnamurthi, M. Arivanandhan, Effect of PVP concentrations on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanparticles. Nano-Struct. Nano-Object. 11, 112–123 (2017)CrossRefGoogle Scholar
  34. 34.
    X.X. Feng, L.L. Zhang, J.Y. Chen, Y.H. Guo, H.P. Zhang, C.I. Jia, Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. Int. J. Biol. Macromol. 40, 105–111 (2007)CrossRefGoogle Scholar
  35. 35.
    H. Zhang, J. Magoshi, M. Becker, J.Y. Chen, R. Matsunaga, Thermal properties of Bombyx mori silk fibers. J. Appl. Polym. Sci. 86, 1817–1820 (2002)CrossRefGoogle Scholar
  36. 36.
    S.K. Samal, M. Dash, F. Chiellini, X. Wang, E. Chiellini, H.A. Declercq, D.L. Kaplan, Silk/chitosan biohybrid hydrogels and scaffolds via green technology. RSC Adv. 4, 53547–53556 (2014)CrossRefGoogle Scholar
  37. 37.
    E. Callone, S. Dire, X. Hu, A. Motta, Processing influence on molecular assembling and structural conformations in silk fibroin: elucidation by solid-state NMR. ACS Biomater. Sci. Eng. 2, 758–767 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Stiller, J. Barzola-Quiquia, P. Esquinazi, S. So, I. Hwang, P. Schmuki, J. Bottner, I. Estrela-Lopis, Electrical transport properties of polycrystalline and amorphous TiO2 single nanotubes. Nano-Struct. Nano-Object. 10, 51–56 (2017)CrossRefGoogle Scholar
  39. 39.
    W. Yu, T. Kuzuya, S. Hirai, Y. Tamada, K. Sawada, T. Iwasa, Preparation of Ag nanoparticle dispersed silk fibroin compact. Appl. Surf. Sci. 262, 212–217 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Choudhury, Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens. Actuator B 138, 318–325 (2009)CrossRefGoogle Scholar
  41. 41.
    H. Tao, S.M. Siebert, M.A. Brenckle, R.D. Averitt, M. Cronin-Golomb, D.L. Kalpan, F.G. Omenetto, Gold nanoparticle-doped biocompatible silk films as a path to implantable-thermoelectrically wireless powering devices. Appl. Phys. Lett. 97, 123702 (2010)CrossRefGoogle Scholar
  42. 42.
    C.K. Kwan, Dielectric Phenomenon in Solids with Emphasis on Physical Concepts of Electronic Processes (Elsevier Academic Press, San Diego, 2004). ISBN 0-12-396561-6Google Scholar
  43. 43.
    L. Yu, X. Hu, D.L. Kaplan, P. Cebe, Dielectric relaxation spectroscopy of hydrated and dehydrated silk fibroin cast from aqueous solution. Biomacromolecules 11, 2766–2775 (2010)CrossRefGoogle Scholar
  44. 44.
    T. Gan, Z. Shi, D. Hu, J. Sun, H. Wang, Y. Liu, Synthesis of graphene oxide-wrapped core-shell structured carbon sphere@Al2O3 as electrode material for voltammetric determination of butylated hydroxyanisole in food products. Ionics 21, 2959–2968 (2015)CrossRefGoogle Scholar
  45. 45.
    B. Shruthi, B.J. Madhu, V. Bheema Raju, Influence of TiO2 on the electrochemical performance of pasted type β-nickel hydroxide electrode in alkaline electrolyte. J. Energy Chem. 25, 41–48 (2016)CrossRefGoogle Scholar
  46. 46.
    K. Pandiselvi, S. Thambidurai, Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor. Ionics 20, 551–561 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • C. S. Shivananda
    • 1
    Email author
  • B. Lakshmeesha Rao
    • 2
  • Sangappa
    • 3
  1. 1.Department of PhysicsKLE Society’s S Nijalingappa CollegeBangaloreIndia
  2. 2.Department of PG Studies in PhysicsSri Dharmasthala Manjunatheshwara College (Autonomous)UjireIndia
  3. 3.Department of Studies in PhysicsMangalore UniversityMangaloreIndia

Personalised recommendations