Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications
- 28 Downloads
Abstract
Spinel ferrites (SFs) show high potential in different aspects of modern technology. Particularly, copper ferrite represents a promising electrode material for supercapacitors and lithium based batteries. This paper is devoted to synthesizing and characterizing nanostructured copper substituted cobalt ferrites using an eco-friendly sol–gel method. Energy dispersive X-ray (EDX) and FT-IR analyses confirm the chemical composition and the successful formation of the cubic phase of CuFe2O4, respectively. XRD analyses based on Williamson–Hall (W–H) method indicate that the average crystallite size drops from 25.1 to 12.1 nm dependent on the Cu2+ content in the samples. Further, scanning electron microscopy (SEM) reveals that the CoFe2O4 (CFO) has a honeycomb structure, which gradually disappears with the soaring of Cu2+ content in the samples and converts to a porous sponge-like shape structure. The investigated copper substituted CFO holds a high specific surface area equals to 102.5139 m2 g−1 which satisfies the contaminant adsorption applications. The measured DC resistivity (ρDC = 108 Ω m) is high enough to meet the requirements of transformer cores applications. Due to the difference in the magnetic moment between Cu2+ and Co2+ cations, the coercivity of the CFO significantly depends on the Cu2+ content; it has declined by more than 50% for the system Co0.25Cu0.75Fe2O4 in comparison to the pure CFO (Hc = 1617.30 Gauss).
Notes
Acknowledgements
The authors thank the Materials Science Unit, Radiation Physics Department, National Center for Radiation Research and Technology, Egypt, for financing and supporting this study under the project Synthesizing and Characterizations of Nanostructured Magnetic Materials.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0. 70—xCuxZn0. 30Fe2O4 spinel ferrite. Ceram. Int. 44(5), 5466–5472 (2018)Google Scholar
- 2.T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloy. Compd. 694, 777–791 (2017)Google Scholar
- 3.J. Patil, D. Nadargi, I.S. Mulla, S. Suryavanshi, Spinel MgFe 2 O 4 thick films: a colloidal approach for developing gas sensors. Mater. Lett. 213, 27–30 (2018)Google Scholar
- 4.S. Goh, C.H. Chia, S. Zakaria, M. Yusoff, C. Haw, S. Ahmadi, N. Huang, H. Lim, Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. Mater. Chem. Phys. 120(1), 31–35 (2010)Google Scholar
- 5.M. Sedlacik, V. Pavlinek, P. Peer, P. Filip, Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature. Dalton Trans. 43(18), 6919–6924 (2014)Google Scholar
- 6.N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Synthesis and magnetism of hierarchical iron oxide particles. Mater. Des. 86, 797–808 (2015)Google Scholar
- 7.N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Biomedical applications of advanced multifunctional magnetic nanoparticles. J. Nanosci. Nanotechnol. 15(12), 10091–10107 (2015)Google Scholar
- 8.K.-H. Hellwege, L. Bornstein, Numerical Data and Functional Relationship in Science and Technology, Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystal (Springer-Verlag Berlin, Heidelberg, New York, 1979)Google Scholar
- 9.I. Campbell, A. Fert, Ferromagnetic materials (EP Wolfarth, Amsterdam, 1982)Google Scholar
- 10.K. Khalaf, A. Al-Rawas, H. Widatallah, K. Al-Rashdi, A. Sellai, A. Gismelseed, M. Hashim, S. Jameel, M. Al-Ruqeishi, K. Al-Riyami, Influence of Zn2+ ions on the structural and electrical properties of Mg1—xZnxFeCrO4 spinels. J. Alloy. Compd. 657, 733–747 (2016)Google Scholar
- 11.W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 11(2), 479–484 (2009)Google Scholar
- 12.V. Lakhani, B. Zhao, L. Wang, U. Trivedi, K. Modi, Negative magnetization, magnetic anisotropy and magnetic ordering studies on Al3+-substituted copper ferrite. J. Alloy. Compd. 509(14), 4861–4867 (2011)Google Scholar
- 13.N. Moumen, M. Pileni, New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem. Mater. 8(5), 1128–1134 (1996)Google Scholar
- 14.C. Pham-Huu, N. Keller, C. Estournes, G. Ehret, J. Greneche, M. Ledoux, Microstructural investigation and magnetic properties of CoFe 2 O 4 nanowires synthesized inside carbon nanotubes. Phys. Chem. Chem. Phys. 5(17), 3716–3723 (2003)Google Scholar
- 15.H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)Google Scholar
- 16.M. Sajjia, M. Oubaha, M. Hasanuzzaman, A.G. Olabi, Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceram. Int. 40(1), 1147–1154 (2014)Google Scholar
- 17.A. Samavati, A. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology 30, 158–163 (2017)Google Scholar
- 18.B.C. Sekhar, G. Rao, O. Caltun, B.D. Lakshmi, B.P. Rao, P.S. Rao, Magnetic and magnetostrictive properties of Cu substituted Co-ferrites. J. Magn. Magn. Mater. 398, 59–63 (2016)Google Scholar
- 19.M. Orojloo, P. Zolgharnein, M. Solimannejad, S. Amani, Synthesis and characterization of cobalt (II), nickel (II), copper (II) and zinc (II) complexes derived from two Schiff base ligands: Spectroscopic, thermal, magnetic moment, electrochemical and antimicrobial studies. Inorg. Chim. Acta 467, 227–237 (2017)Google Scholar
- 20.M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Co (1 – x)] MxFe2O4;(M = Zn, Cu, Mn; x = 0, 05)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)Google Scholar
- 21.A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)Google Scholar
- 22.A.A. Reheem, A. Atta, M.A. Maksoud, Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat. Phys. Chem. 127, 269–275 (2016)Google Scholar
- 23.P. Belavi, G. Chavan, L. Naik, R. Somashekar, R. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)Google Scholar
- 24.K. Ramakrishna, C. Srinivas, S. Meena, B. Tirupanyam, P. Bhatt, S. Yusuf, C. Prajapat, D. Potukuchi, D. Sastry, Investigation of cation distribution and magnetocrystalline anisotropy of Ni x Cu 0.1 Zn 0.9 – x Fe 2 O 4 nanoferrites: Role of constant mole percent of Cu 2 + dopant in place of Zn 2+. Ceram. Int. 43(11), 7984–7991 (2017)Google Scholar
- 25.M.K. Abbas, M.A. Khan, F. Mushtaq, M.F. Warsi, M. Sher, I. Shakir, M.F.A. Aboud, Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram. Int. 43(7), 5524–5533 (2017)Google Scholar
- 26.A.V. Humbe, A.C. Nawle, A. Shinde, K. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)Google Scholar
- 27.M. Hashim, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, R. Kotnala, Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloy. Compd. 549, 348–357 (2013)Google Scholar
- 28.V.J. Angadi, B. Rudraswamy, K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+–Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustion route. J. Alloy. Compd. 656, 5–12 (2016)Google Scholar
- 29.M. Amer, T. Meaz, A. Hashhash, S. Attalah, A. Ghoneim, Structural properties and magnetic interactions in Sr-doped Mg–Mn nanoparticle ferrites. Mater. Chem. Phys. 162, 442–451 (2015)Google Scholar
- 30.E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)Google Scholar
- 31.M.T. Rahman, M. Vargas, C. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014)Google Scholar
- 32.A. Ditta, M.A. Khan, M. Junaid, R.A. Khalil, M.F. Warsi, Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0. 4Co0. 6Fe2O4) ferrites. Phys. B 507, 27–34 (2017)Google Scholar
- 33.A. Ramakrishna, N. Murali, S. Margarette, T.W. Mammo, N.K. Joythi, B. Sailaja, C.C.S. Kumari, K. Samatha, V. Veeraiah, Studies on structural, magnetic, and DC electrical resistivity properties of Co0. 5M0. 37Cu0. 13Fe2O4 (M = Ni, Zn and Mg) ferrite nanoparticle systems, Adv. Powder Technol. 29, 2601–2607 (2018)Google Scholar
- 34.M. Amer, A. Matsuda, G. Kawamura, R. El-Shater, T. Meaz, F. Fakhry, Characterization and structural and magnetic studies of as-synthesized Fe2 + CrxFe (2 – x) O4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)Google Scholar
- 35.M. Amer, T. Meaz, A. Mostafa, H. El-Ghazally, Structural and physical properties of the nano-crystalline Al-substituted Cr–Cu ferrite. J. Magn. Magn. Mater. 343, 286–292 (2013)Google Scholar
- 36.R.H. Kadam, S.T. Alone, M.L. Mane, A.R. Biradar, S.E. Shirsath, Phase evaluation of Li + substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)Google Scholar
- 37.C.C. Naik, S. Gaonkar, I. Furtado, A. Salker, Effect of Cu 2 + substitution on structural, magnetic and dielectric properties of cobalt ferrite with its enhanced antimicrobial property. J. Mater. Sci. Mater. Electron. 29(17), 14746–14761 (2018)Google Scholar
- 38.S. Singhal, J. Singh, S. Barthwal, K. Chandra, Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co 1 – xNixFe 2 O 4). J. Solid State Chem. 178(10), 3183–3189 (2005)Google Scholar
- 39.J. Balavijayalakshmi, N. Suriyanarayanan, R. Jayapraksah, Influence of copper on the magnetic properties of cobalt ferrite nano particles. Mater. Lett. 81, 52–54 (2012)Google Scholar
- 40.M. Gabal, Y. Al Angari, M. Kadi, Structural and magnetic properties of nanocrystalline Ni1 – xCuxFe2O4 prepared through oxalates precursors. Polyhedron 30(6), 1185–1190 (2011)Google Scholar
- 41.K.R. Babu, K.R. Rao, B.R. Babu, Cu2+-modified physical properties of Cobalt-Nickel ferrite. J. Magn. Magn. Mater. 434, 118–125 (2017)Google Scholar
- 42.K.V. Babu, G.S. Kumar, K. Jalaiah, P.T. Shibeshi, Effects of copper substitution on the microstructural, electrical and magnetic properties of Ni0. 7Co0. 3-xCuxFe2O4 ferrites. J. Phys. Chem. Solids 118, 172–185 (2018)Google Scholar
- 43.R. Devan, Y. Kolekar, B. Chougule, Effect of cobalt substitution on the properties of nickel–copper ferrite. J. Phys. Condens. Matter. 18(43), 9809 (2006)Google Scholar
- 44.M. Kurian, A. Appukkuttan, A.K. Paul, D.S. Nair, Influence of synthesis conditions on the surface properties of cobalt copper nanoferrites. J. Aust. Ceram. Soc. 54(2), 199–204 (2018)Google Scholar
- 45.M.N. Akhtar, A. Rahman, A. Sulong, M.A. Khan, Structural, spectral, dielectric and magnetic properties of Ni0. 5 MgxZn0. 5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Int. 43(5), 4357–4365 (2017)Google Scholar
- 46.D. Jnaneshwara, D. Avadhani, B.D. Prasad, H. Nagabhushana, B. Nagabhushana, S. Sharma, S. Prashantha, C. Shivakumara, Role of Cu2 + ions substitution in magnetic and conductivity behavior of nano-CoFe2O4. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132, 256–262 (2014)Google Scholar
- 47.K. Ramakrishna, C. Srinivas, S. Meena, B. Tirupanyam, P. Bhatt, S. Yusuf, C. Prajapat, D. Potukuchi, D. Sastry, Investigation of cation distribution and magnetocrystalline anisotropy of NixCu0. 1Zn0. 9 – xFe2O4 nanoferrites: Role of constant mole percent of Cu2 + dopant in place of Zn2+. Ceram. Int. 43(11), 7984–7991 (2017)Google Scholar
- 48.K.H. Maria, S. Choudhury, M.A. Hakim, Structural phase transformation and hysteresis behavior of Cu-Zn ferrites. Int. Nano Lett. 3(1), 42 (2013)Google Scholar
- 49.G. Mustafa, M. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, M. Ahmad, Investigation of structural and magnetic properties of Ce 3+-substituted nanosized Co–Cr ferrites for a variety of applications. J. Alloy. Compd. 618, 428–436 (2015)Google Scholar
- 50.M. Dar, D. Varshney, Effect of d-block element Co2 + substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites. J. Magn. Magn. Mater. 436, 101–112 (2017)Google Scholar
- 51.Q. Wei, F. Xiong, S. Tan, L. Huang, E.H. Lan, B. Dunn, L. Mai, Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29(20), 1602300 (2017)Google Scholar
- 52.F. Dehghani, S. Hashemian, A. Shibani, Effect of calcination temperature for capability of MFe2O4 (M = Co, Ni and Zn) ferrite spinel for adsorption of bromophenol red. J. Ind. Eng. Chem. 48, 36–42 (2017)Google Scholar
- 53.K. Ahalya, N. Suriyanarayanan, V. Ranjithkumar, Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nano particles. J. Magn. Magn. Mater. 372, 208–213 (2014)Google Scholar
- 54.T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256–1266 (2018)Google Scholar
- 55.S. Patange, S.E. Shirsath, K. Lohar, S. Algude, S. Kamble, N. Kulkarni, D. Mane, K. Jadhav, Infrared spectral and elastic moduli study of NiFe 2 – x Cr x O 4 nanocrystalline ferrites. J. Magn. Magn. Mater. 325, 107–111 (2013)Google Scholar
- 56.M. Amer, Structural and magnetic studies of the Co 1 + x Ti x Fe 2 (1 – x) O 4 ferrites. J. Magn. Magn. Mater. 426, 771–778 (2017)Google Scholar
- 57.E. El-Ghazzawy, M. Amer, Structural, elastic and magnetic studies of the as-synthesized Co 1 – x Sr x Fe 2 O 4 nanoparticles. J. Alloy. Compd. 690, 293–303 (2017)Google Scholar
- 58.W. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16(1), 62 (1953)Google Scholar
- 59.K. Modi, M. Rangolia, M. Chhantbar, H. Joshi, Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites. J. Mater. Sci. 41(22), 7308–7318 (2006)Google Scholar
- 60.V. Patil, S.E. Shirsath, S. More, S. Shukla, K. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloy. Compd. 488(1), 199–203 (2009)Google Scholar
- 61.M. Amer, A. Matsuda, G. Kawamura, R. El-Shater, T. Meaz, F. Fakhry, Characterization and structural and magnetic studies of as-synthesized Fe 2 + CrxFe (2 – x) O 4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)Google Scholar
- 62.R.A. Pawar, S.M. Patange, Q.Y. Tamboli, V. Ramanathan, S.E. Shirsath, Spectroscopic, elastic and dielectric properties of Ho3 + substituted Co-Zn ferrites synthesized by sol-gel method. Ceram. Int. 42(14), 16096–16102 (2016)Google Scholar
- 63.M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E. Abdel-Khalek, M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial pathogenesis 127, 144–158 (2019)Google Scholar
- 64.S. Algude, S. Patange, S.E. Shirsath, D. Mane, K. Jadhav, Elastic behaviour of Cr 3 + substituted Co–Zn ferrites. J. Magn. Magn. Mater. 350, 39–41 (2014)Google Scholar
- 65.S.E. Shirsath, S. Patange, R. Kadam, M. Mane, K. Jadhav, Structure refinement, cation site location, spectral and elastic properties of Zn 2 + substituted NiFe 2 O 4. J. Mol. Struct. 1024, 77–83 (2012)Google Scholar
- 66.R. Pawar, S. Desai, S. Patange, S. Jadhav, K. Jadhav, Inter-atomic bonding and dielectric polarization in Gd 3 + incorporated Co-Zn ferrite nanoparticles. Phys. B 510, 74–79 (2017)Google Scholar
- 67.N. Abu-Elsaad, Elastic properties of germanium substituted lithium ferrite. J. Mol. Struct. 1075, 546–550 (2014)Google Scholar
- 68.I. Ahmad, S.M. Shah, M.N. Ashiq, F. Nawaz, A. Shah, M. Siddiq, I. Fahim, S. Khan, Fabrication of Nd3 + and Mn2 + ions co-doped spinal strontium nanoferrites for high frequency device applications. J. Electron. Mater. 45(10), 4979–4988 (2016)Google Scholar
- 69.T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Studies of structural, morphological, electrical, and magnetic properties of Mg-substituted Co-ferrite materials synthesized using sol-gel autocombustion method. Phys. B 523, 24–30 (2017)Google Scholar
- 70.A. Mostafa, E. Abdel-Khalek, W. Daoush, S. Moustfa, Study of some co-precipitated manganite perovskite samples-doped iron. J. Magn. Magn. Mater. 320(24), 3356–3360 (2008)Google Scholar
- 71.C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of nickel on the electrical properties of nanostructured MnZn ferrite. J. Alloys Compd. 498(2), 203–206 (2010)Google Scholar
- 72.L. Van Uitert, Dc resistivity in the nickel and nickel zinc ferrite system. J. Chem. Phys. 23(10), 1883–1887 (1955)Google Scholar
- 73.K. Ramarao, B.R. Babu, B.K. Babu, V. Veeraiah, S. Ramarao, K. Rajasekhar, A.V. Rao, Composition dependence of structural, magnetic and electrical properties of Co substituted magnesium ferrite. Phys. B 528, 18–23 (2018)Google Scholar
- 74.M. El-Saadawy, Diffusion coefficient of vacancies and jump length of electrons in Co1 – xZnxFe2O4 ferrites. J. Adv. Ceram. 1(2), 144–149 (2012)Google Scholar
- 75.O. Hemeda, M. El-Saadawy, Effect of gamma irradiation on the structural properties and diffusion coefficient in Co–Zn ferrite. J. Magn. Magn. Mater. 256(1–3), 63–68 (2003)Google Scholar
- 76.A. Tawfik, S. Olofa, The diffusion coefficient of vacancies and jump length of electrons in zinc doped manganese ferrite. J. Magn. Magn. Mater. 174(1–2), 133–136 (1997)Google Scholar
- 77.M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, M. Hussain, S.A. Khan, I. Ali, Synthesis, electrical and magnetic properties of Pr-substituted mn ferrites for high-frequency applications. J. Electron. Mater. 46(3), 1826–1835 (2017)Google Scholar
- 78.M.T. Farid, I. Ahmad, M. Kanwal, I. Ali, Effect of praseodymium ions on manganese based spinel ferrites, Chin. J. Phys. 55, 813–824 (2017)Google Scholar
- 79.P.P. Naik, R. Tangsali, Enduring effect of rare earth (Nd3+) doping and γ-radiation on electrical properties of nanoparticle manganese zinc ferrite. J. Alloy. Compd. 723, 266–275 (2017)Google Scholar
- 80.M. Raghasudha, D. Ravinder, P. Veerasomaiah, Electrical resistivity studies of Cr doped Mg nano-ferrites. Mater. Discov. 2, 50–54 (2015)Google Scholar
- 81.M. El-Saadawy, Diffusion coefficient of vacancies and jump length of electrons in Co 1 – x Zn x Fe 2 O 4 ferrites. J. Adv. Ceram. 1(2), 144–149 (2012)Google Scholar
- 82.X. Guoxi, X. Yuebin, Effects on magnetic properties of different metal ions substitution cobalt ferrites synthesis by sol–gel auto-combustion route using used batteries. Mater. Lett. 164, 444–448 (2016)Google Scholar
- 83.H. Bayrakdar, O. Yalçın, S. Vural, K. Esmer, Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. J. Magn. Magn. Mater. 343, 86–91 (2013)Google Scholar
- 84.R. Sharma, P. Thakur, M. Kumar, N. Thakur, N. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloy. Compd. 684, 569–581 (2016)Google Scholar
- 85.K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M.A. El-sadek, F.A. Mir, A. Imran, D.A. Jameel, Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 411, 91–97 (2016)Google Scholar