Advertisement

Effect of the indium myristate precursor concentration on the structural, optical, chemical surface, and electronic properties of InP quantum dots passivated with ZnS

  • D. A. Granada-Ramirez
  • J. S. Arias-Cerón
  • M. L. Gómez-Herrera
  • J. P. Luna-Arias
  • M. Pérez-González
  • S. A. Tomás
  • P. Rodríguez-Fragoso
  • J. G. Mendoza-AlvarezEmail author
Article
  • 54 Downloads

Abstract

In this work, we present results on the synthesis and characterization of InP and InP@ZnS quantum dots (QDs), grown using a single-step chemical synthesis method without injection of hot precursors, varying the concentration of indium myristate in both cases. It was found a color variation of the QDs in solution due to the quantum confinement effects when the nanoparticle sizes are smaller than the exciton Bohr radius. The band-gap energy of the samples was determined from the absorption spectra. From the photoluminescence (PL) spectra, emission peaks located in the range from 2.1 to 3.0 eV were observed. Furthermore, an enhanced PL emission due to a passivation effect in the ZnS-covered InP QDs was obtained. From X-ray diffraction (XRD), it was shown the presence of crystalline phases of the InP, ZnS, and In2O3 nanoparticles, with sizes ranging from 8 to 10 nm as determined by high resolution transmission electron microscopy (HR-TEM). From X-ray photoelectron spectroscopy (XPS) analysis, it was confirmed the formation of InP, ZnS, and In2O3; moreover, by means of a valence band analysis, the electronic structure of the samples was further investigated. The effect of the indium myristate precursor concentration on the optical, structural, surface chemical, and electronic properties of InP and InP@ZnS QDs will be discussed.

Notes

Acknowledgements

Authors are thankful to CONACYT (Projects Number 240908 and 205733) and CINVESTAV-IPN for financial support. We also thank the Center for Nanosciences and Micro and Nanotechnologies of the IPN. In addition, we thank Dr. Marcela Guerrero and Dr. Angel Guillén for their technical assistance. We acknowledge to Prof. Jaime Santoyo-Salazar and Prof. Daniel Bahena for enlightening discussions.

References

  1. 1.
    Y. Pu, F. Cai, D. Wang, J.-X. Wang, J.-F. Chen, Ind. Eng. Chem. Res. 57, 1790 (2018)CrossRefGoogle Scholar
  2. 2.
    J.S. Arias-Cerón, M.P. González-Aráoz, A. Bautista-Hernández, J.F. Sánchez-Ramírez, J.L. Herrera-Pérez, J.G. Mendoza-Alvarez, Superficies y Vacío 25(2), 134 (2012)Google Scholar
  3. 3.
    D.A. Granada-Ramírez, J.S. Arias-Cerón, P. Rodríguez-Fragoso, F. Vázquez-Hernández, J.P. Luna-Arias, J.L. Herrera, J.G. Pérez, Mendoza-Alvarez, in Nanobiomaterials, ed. by R. Narayan. Nanostructured materials for biomedical applications (Elsevier, New York, 2017), p. 411Google Scholar
  4. 4.
    F. Vázquez-Hernández, D.A. Granada-Ramírez, J.S. Arias-Cerón, P. Rodriguez-Fragoso, J.G. Mendoza-Alvarez, E. Ramón-Gallegos, A. Cruz-Orea, J.P. Luna-Arias, in Nanobiomaterials, ed. by R. Narayan. Nanostructured materials for biomedical applications (Elsevier, New York, 2017), p. 503Google Scholar
  5. 5.
    J. Owen, L. Brus, J. Am. Chem. Soc. 139, 10939 (2017)CrossRefGoogle Scholar
  6. 6.
    M.D. Tessier, D. Dupont, K.D. Nolf, J.D. Roo, Z. Hens, Chem. Mater. 27, 4893 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Sadeghi, H.B. Jalali, R. Melikov, B.G. Kumar, M.M. Aria, C.W. Ow-Yang, S. Nizamoglu, ACS Appl. Mater. Interfaces 10, 12975 (2018)CrossRefGoogle Scholar
  8. 8.
    K.T. Fountaine, W.-H. Cheng, C.R. Bukowsky, H.A. Atwater, ACS Photonics 3, 1826 (2016)CrossRefGoogle Scholar
  9. 9.
    W. Yang, W. Zhang, G. Zhang, J. Zhu, G. He, R. Guo, Opt. Commun. 418, 46 (2018)CrossRefGoogle Scholar
  10. 10.
    Z. Yang, M. Gao, W. Wu, X. Yang, X.W. Sun, J. Zhang, H.-C. Wang, R.-S. Liu, C.-Y. Han, H. Yang, W. Li, Mater. Today (2018)  https://doi.org/10.1016/j.mattod.2018.09.002 Google Scholar
  11. 11.
    X. Dai, Y. Deng, X. Peng, Y. Jin, Adv. Mater. 29, 1607022 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Karimi, M. Heurlin, S. Limpert, V. Jain, E. Mansouri, X. Zeng, L. Samuelson, H. Linke, M.T. Borgström, H. Pettersson, Infrared Phys. Techn. 96, 209 (2019)CrossRefGoogle Scholar
  13. 13.
    S. Kumar, M. Nehra, A. Deep, D. Kedia, N. Dilbaghi, K.-H. Kim, Renew. Sust. Energ. Rev. 73, 821 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Yu, X.-B. Fan, X. Wang, J. Li, Q. Zhang, A. Xia, S. Wei, L.-Z. Wu, Y. Zhou, G.R. Patzke, Nat. Commun. 9, 4009 (2018)CrossRefGoogle Scholar
  15. 15.
    K.-T. Yong, H. Ding, I. Roy, W.-C. Law, E.J. Bergey, A. Maitra, P.N. Prasad, ACS Nano 3, 502 (2009)CrossRefGoogle Scholar
  16. 16.
    N. Mordvinova, P. Emelin, A. Vinokurov, S. Dorofeev, A. Abakumov, T. Kuznetsova, Beilstein J. Nanotechnol. 5, 1220 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Altintas, M.Y. Talpur, E. Mutlugun, J. Alloys Compd. 711, 335 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Mongin, P. Moroz, M. Zamkov., F.N. Castellano, Nat. Chem. 10, 225 (2018)CrossRefGoogle Scholar
  19. 19.
    M.P. Vetchinnikov, A.S. Lipatiev, G.Yu. Shakhgildyan, N.V. Golubev, S. Ignat’eva, S.S. Fedotov, T.O. Lipateva, S.V. Lotarev, G.A. Vilkovisky, V.N. Sigaev, Opt. Lett. 43, 2519 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Singh, Y.M. Sabri, D. Jampaiah, P. Selvakannan, A. Nafady, A.E. Kandjani, S.K. Bhargava, Mater. Res. Bull. 90, 260 (2017)CrossRefGoogle Scholar
  21. 21.
    Z. Yang, O. Voznyy, M. Liu, M. Yuan, O.S. Ahmed, L. Levina, S. Kinge, S. Hoogland, E.H. Sargent, ACS Nano 9, 12327 (2015)CrossRefGoogle Scholar
  22. 22.
    L. Li, P. Reiss, J. Am. Chem. Soc. 130, 11588 (2008)CrossRefGoogle Scholar
  23. 23.
    T. Watanabe, C. Wada, Y. Iso, T. Isobe, H. Sasaki, ECS J. Solid State Sci. Technol. 6, R75 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Protiere, P. Reiss, Chem. Commun. 23, 2417 (2007)CrossRefGoogle Scholar
  25. 25.
    A.A. Guzelian, J.E.B. Katari, A.V. Kadavanich, U. Banin, K. Hamad, E. Juban, A.P. Alivisatos, R.H. Wolters, C.C. Arnold, J.R. Heath, J. Phys. Chem. 100, 7212 (1996)CrossRefGoogle Scholar
  26. 26.
    B.W.S. Seo, H.H. Jo, K. Lee, J.T. Park, Adv. Mater. 10, 795 (2003)CrossRefGoogle Scholar
  27. 27.
    W. Yang, G. He, S. Mei, J. Zhu, W. Zhang, Q. Chen, G. Zhang, R. Guo, Appl. Surf. Sci. 423, 686 (2017)CrossRefGoogle Scholar
  28. 28.
    D.-W. Jeong, H.W. Seo, Y.T. Byun, K.-M. Lim, E.J. Jeon, B.S. Kim, Appl. Surf. Sci. (2019)  https://doi.org/10.1016/j.apsusc.2019.01.067 Google Scholar
  29. 29.
    A. Singh, C. Sharma, M. Kumar, R. Kumari, R. Srivastava, S.N. Sharma, J. Lumin. 198, 108 (2018)CrossRefGoogle Scholar
  30. 30.
    J. Zhang, L. Jin, S. Li, J. Xie, F. Yang, J. Duan, T.-H. Shen, H. Wang, J. Mater. Sci. Technol. 31, 634 (2015)CrossRefGoogle Scholar
  31. 31.
    L.E. Brus, J. Phys. Lett 90, 2555 (1986)Google Scholar
  32. 32.
    L. Li, M. Protiere, P. Reiss, Chem. Mater. 20, 2621 (2008)CrossRefGoogle Scholar
  33. 33.
    J.W. Mullin, Crystallization, 4th edn. (Elsevier Butterworth-Heinemann, Oxford, 2001)Google Scholar
  34. 34.
    J. Tauc, Amorphous and Liquid Semiconductors (Springer US Plenum, New York, 1974)CrossRefGoogle Scholar
  35. 35.
    T. Watanabe, Y. Iso, T. Isobe, H. Sasaki, RSC Adv. 8, 25526 (2018)CrossRefGoogle Scholar
  36. 36.
    B. Barman, K.C. Sarma, Chalcogenide Lett. 8, 171 (2011)Google Scholar
  37. 37.
    A.D. Yoffe, Adv. Phys. 42, 173 (1993)CrossRefGoogle Scholar
  38. 38.
    A. Singh, P. Chawla, S. Jain, S.N. Sharma, Phys. E 90, 175 (2017)CrossRefGoogle Scholar
  39. 39.
    O.I. Micic, K.M. Jones, A. Cahill, A.J. Nozik, J. Phys. Chem. B 102, 9791 (1998)CrossRefGoogle Scholar
  40. 40.
    A. Cros-Gagneux, F. Delpech, C. Nayral, A. Cornejo, Y. Coppel, B. Chaudret, J. Am. Chem. Soc. 132, 18147 (2010)CrossRefGoogle Scholar
  41. 41.
    A. Klein, Appl. Phys. Lett. 77, 13 (2000)CrossRefGoogle Scholar
  42. 42.
    Y.R. Lyu, T.E. Hsieh, ECS Solid State Lett. 1, 2 (2012)CrossRefGoogle Scholar
  43. 43.
    T. Suzuki, H. Watanabe, T. Ueno, Y. Ozaki, H. Imai, Langmuir 33, 3014 (2017)CrossRefGoogle Scholar
  44. 44.
    H. Virieux, M. Le Troedec, A. Cros-Gagneux, W.-S. Ojo, F. Delpech, C. Nayral, H. Martinez, BChaudret, J. Am. Chem. Soc. 134, 19701 (2012)CrossRefGoogle Scholar
  45. 45.
    N. Mordvinova, A. Vinokurov, T. Kuznetsova, O.I. Lebedev, S. Dorofeev, Dalton Trans. 46, 1297 (2017)CrossRefGoogle Scholar
  46. 46.
    D.Y. Cho, L. Xi, C. Boothroyd, B. Kardynal, Y. Lam, Sci Rep. 14, 6 (2016)Google Scholar
  47. 47.
    J.L. Stein, W.M. Holden, A. Venkatesh, M.E. Mundy, A.J. Rossini, G.T. Seidler, B.M. Cossairt, Chem. Mater. 30, 6377 (2018)CrossRefGoogle Scholar
  48. 48.
    P.V. der-Heide, X.P.S. Instrumentation, X-Ray Photoelectron Spectroscopy: An Introduction to Principles and Practices (John Wiley & Sons, Inc., Hoboken, 2011)CrossRefGoogle Scholar
  49. 49.
    M. Ponce-Mosso, M. Pérez-González, P.E. García-Tinoco, H. Crotte-Ledesma, M. Morales-Luna, S.A. Tomás, Catal. Today (2018)  https://doi.org/10.1016/j.cattod.2018.04.065 Google Scholar
  50. 50.
    T. Kim, S.W. Kim, M. Kang, S.-W. Kim, J. Phys. Chem. Lett. 3, 214 (2012)CrossRefGoogle Scholar
  51. 51.
    S.J.O. Hardman, D.M. Graham, S.K. Stubbs, B.F. Spencer, E.A. Seddon, H.-T. Fung, S. Gardonio, F. Sirotti, M.G. Silly, J. Akhtar, P. O’Brien, D.J. Bieksa, W.R. Flavell, Phys. Chem. Chem. Phys. 13, 20275 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. A. Granada-Ramirez
    • 1
  • J. S. Arias-Cerón
    • 2
  • M. L. Gómez-Herrera
    • 3
  • J. P. Luna-Arias
    • 1
    • 4
  • M. Pérez-González
    • 5
  • S. A. Tomás
    • 6
  • P. Rodríguez-Fragoso
    • 6
  • J. G. Mendoza-Alvarez
    • 6
    Email author
  1. 1.Programa de Nanociencias y NanotecnologíaCentro de Investigación y de Estudios Avanzados del I.P.NCiudad de MéxicoMexico
  2. 2.Departamento de Ingeniería Eléctrica, Sección de Electrónica del Estado SólidoCentro de Investigación y de Estudios Avanzados del I.P.NCiudad de MéxicoMexico
  3. 3.Facultad de IngenieríaUniversidad Autónoma de QuerétaroQuerétaroMexico
  4. 4.Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del I.P.NCiudad de MéxicoMexico
  5. 5.Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del I.P.NCiudad de MéxicoMexico
  6. 6.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del I.P.NCiudad de MéxicoMexico

Personalised recommendations