Electrical properties of thin silicon oxides grown at room temperature by ion beam sputtering technique

  • Philippe FerrandisEmail author
  • Mehdi Kanoun
  • Bernard André


Metal-oxide-semiconductor capacitors with 15 nm of silicon oxide deposited by ion beam sputtering on Si substrates were analyzed using current–voltage and capacitance–voltage measurements. A large Fowler–Nordheim conduction zone between a threshold field of 5 MV·cm−1 and a breakdown field of 12.5 MV·cm−1 was established. Hysteresis measurements led to conclude that a few amount of charge is stored in the bulk of the dielectric. Interface trap density was found to be very close to that of thermally grown Si oxide with a midgap value of 3.3 × 1010 cm−2·eV−1. Fowler–Nordheim injections using a constant current density were used to study the build-up of trapped charge in the bulk oxide. Hence, the normalized centroid of the trapped charge distribution has been located close to the metal electrode. Only one trap was extracted from the simulation of experimental data with a saturated trap density among the lowest reported for Si/SiO2 systems of NT = 1.85 × 1012 cm−2 and a capture cross section σ = 2.9 × 10−16 cm2. We demonstrated that a thin and reliable gate oxide with a high electrical quality can be achieved on Si by ion beam sputtering deposition at room temperature. Such an oxide takes its place in technologies where a low thermal budget is required e.g. system-on-panel technology.



The first author would like to thank Brigitte Martin and Bernard Aventurier for their advices in technical steps, and Walid Benzarti for his useful discussions.


  1. 1.
    M. Cao, T. Zhao, K.C. Saraswat, J.D. Plummer, IEEE Electron Device Lett. 15, 304 (1994)CrossRefGoogle Scholar
  2. 2.
    N.-I. Lee, J.-W. Lee, C.-H. Han, Jpn. J. Appl. Phys. 38, 2215 (1999)CrossRefGoogle Scholar
  3. 3.
    N.-I. Lee, J.-W. Lee, H.-S. Kim, C.-H. Han, IEEE Electron Device Lett. 20, 15 (1999)CrossRefGoogle Scholar
  4. 4.
    J.-H. Oh, H.-J. Chung, N.-I. Lee, C.-H. Han, IEEE Electron Device Lett. 21, 304 (2000)CrossRefGoogle Scholar
  5. 5.
    P.-T. Liu, C.S. Huang, C.W. Chen, Electrochem. Solid-State Lett. 10, J89 (2007)CrossRefGoogle Scholar
  6. 6.
    M.-F. Hung, Y.-C. Wu, J.-H. Chiang, J.-H. Chen, L.-C. Chen, J. Nanosci. Nanotechnol. 11, 10419 (2011)CrossRefGoogle Scholar
  7. 7.
    K. Murata, N. Miyatake, Y. Mori, H. Tachibana, Y. Uraoka, T. Fuyuki, ECS Trans. 3, 101 (2006)CrossRefGoogle Scholar
  8. 8.
    N.-I. Lee, J.-W. Lee, S.-H. Hur, H.-S. Kim, C.-H. Han, IEEE Electron Device Lett. 18, 486 (1997)CrossRefGoogle Scholar
  9. 9.
    J.-W. Lee, N.-I. Lee, C.-H. Han, IEEE Electron Device Lett. 19, 458 (1998)CrossRefGoogle Scholar
  10. 10.
    J.-W. Lee, N.-I. Lee, C.-H. Han, IEEE Electron Device Lett. 20, 12 (1999)CrossRefGoogle Scholar
  11. 11.
    S. Han, J. Lee, H. Shin, Electron. Lett. 36, 361 (2000)CrossRefGoogle Scholar
  12. 12.
    C.-H. Tseng, T.-K. Chang, F.-T. Chu, J.-M. Shieh, B.-T. Dai, H.-C. Cheng, A. Chin, IEEE Electron Device Lett. 23, 333 (2002)CrossRefGoogle Scholar
  13. 13.
    A. Tabata, N. Matsuno, Y. Suzuoki, T. Mizutani, Thin Solid Films 289, 84 (1996)CrossRefGoogle Scholar
  14. 14.
    H. Liu, S. Xiong, L. Li, Y. Zhang, Thin Solid Films 484, 170 (2005)CrossRefGoogle Scholar
  15. 15.
    C. Bundesmann, I.-M. Eichentopf, S. Mändl, H. Neumann, Thin Solid Films 516, 8604 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Ji, Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, R. Fan, D. Chen, Thin Solid Films 545, 111 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, Y. Ji, Appl. Opt. 53, A83 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Ji, Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, R. Fan, D. Chen, Chin. Phys. Lett. 31, 046401 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Mateev, T. Lautenschläger, D. Spemann, A. Finzel, J.W. Gerlach, F. Frost, C. Bundesmann, Eur. Phys. J. B 91, 45 (2018)CrossRefGoogle Scholar
  20. 20.
    V. Cosnier, M. Olivier, G. Théret, B. André, J. Vac. Sci. Technol. A 19, 2267 (2001)CrossRefGoogle Scholar
  21. 21.
    E. Defaÿ, B. André, F. Baume, G. Tartavel, D. Muyard, L. Ulmer, Ferroelectrics 288, 121 (2003)CrossRefGoogle Scholar
  22. 22.
    G. Tochitani, M. Shimozuma, H. Tagashira, J. Vac. Sci. Technol. A 11, 400 (1993)CrossRefGoogle Scholar
  23. 23.
    Y.-S. Lee, D. Choi, B. Shong, S. Oh, J.-S. Parka, Ceram. Int. 43, 2095 (2017)CrossRefGoogle Scholar
  24. 24.
    K.-S. Min, J.-Y. Chung, K. Lee, Jpn. J. Appl. Phys. 40, 2963 (2001)CrossRefGoogle Scholar
  25. 25.
    M. Lenzlinger, E.H. Snow, J. Appl. Phys. 40, 278 (1969)CrossRefGoogle Scholar
  26. 26.
    Z.A. Weinberg, Solid State Electron. 20, 11 (1977)CrossRefGoogle Scholar
  27. 27.
    Z.A. Weinberg, A. Hartstein, Solid State Commun. 20, 179 (1976)CrossRefGoogle Scholar
  28. 28.
    J.F. Verwey, E.A. Amerasekera, J. Bisschop, Rep. Prog. Phys. 53, 1297 (1990)CrossRefGoogle Scholar
  29. 29.
    T. Tsukuda, H. Ikoma, Jpn. J. Appl. Phys. 39, 8 (2000)CrossRefGoogle Scholar
  30. 30.
    M. Tabakomori, H. Ikoma, Jpn. J. Appl. Phys. 36, 5409 (1997)CrossRefGoogle Scholar
  31. 31.
    K. Nomura, H. Ogawa, J. Appl. Phys. 71, 1469 (1992)CrossRefGoogle Scholar
  32. 32.
    E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)Google Scholar
  33. 33.
    P. Ferrandis, M. Billaud, J. Duvernay, M. Martin, A. Arnoult, H. Grampeix, M. Cassé, H. Boutry, T. Baron, M. Vinet, G. Reimbold, J. Appl. Phys. 123, 161534 (2018)CrossRefGoogle Scholar
  34. 34.
    M.H. White, J.R. Cricchi, IEEE Trans. Electron Devices 19, 1280 (1972)CrossRefGoogle Scholar
  35. 35.
    J.T. Fitch, S.S. Kim, G. Lucovsky, J. Vac. Sci. Technol. A 8, 1871 (1990)CrossRefGoogle Scholar
  36. 36.
    I.-K. Oh, G. Yoo, C.M. Yoon, T.H. Kim, G.Y. Yeom, K. Kim, Z. Lee, H. Jung, C.W. Lee, H. Kim, H.-B.-R. Lee, Appl. Surf. Sci. 387, 109 (2016)CrossRefGoogle Scholar
  37. 37.
    D.J. DiMaria, J. Appl. Phys. 47, 4073 (1976)CrossRefGoogle Scholar
  38. 38.
    D.J. DiMaria, Proceedings of the international topical conference on the physics of SiO2 and its interfaces, p. 160 (1978)Google Scholar
  39. 39.
    T.H. Ning, H.N. Yu, J. Appl. Phys. 45, 5373 (1974)CrossRefGoogle Scholar
  40. 40.
    L.P. Trombetta, R.J. Zeto, F.J. Feigl, M.E. Zvanut, ECS J. Solid State Sci. Technol. 132, 2706 (1985)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CEA, LETIGrenobleFrance

Personalised recommendations