Advertisement

Structural, morphology and optical properties of NaYF4 thin films doped with trivalent lanthanide ions

  • Jacob Barranco
  • Antonio Méndez-Blas
  • Ma. Estela CalixtoEmail author
Article
  • 33 Downloads

Abstract

NaYF4 and NaYF4:Ln3+ (Ln3+ = Nd3+, Eu3+, Yb3+, Er3+) thin films were prepared by electrodeposition technique. After deposition, all samples were thermally annealed and then fully characterized in order to know their structural, morphology and optical properties. Results have shown the formation of cubic phase NaYF4, i.e. no additional phases were detected even when doping with Ln3+ ions due to the direct substitutional mechanism between Y3+ → Ln3+ ions. Although, when Ln3+ ions enter into the crystal lattice small differences are detected in the lattice parameter due to differences in ionic radius size of the Ln3+ ions. The differences in ionic radius size also affect the particle size and the agglomerated structures size of the Ln3+ doped NaYF4 thin films, which is related to small variations in pH of electrolytic solutions during the electrodeposition process. Being NaYF4 a disordered matrix, when doped with Ln3+ ions; variations on the local crystal field arise for the second nearest neighbors of the Ln3+ ions, imposing thus a slightly different crystal field environment for each subset of Ln3+ ions. Such differences imply an inhomogeneous broadening of their bands corresponding to 4f–4f transitions in the photoluminescence spectra unlike those from ordered crystals that exhibit narrow bands.

Notes

Acknowledgements

This work was carried out with partial financial assistance from VIEP-BUAP under project VIEP2018-205 and from DGPI-BUAP. All the authors contributed equally to this work.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflict of interest to declare.

Supplementary material

10854_2019_780_MOESM1_ESM.docx (133 kb)
Supplementary material 1 (DOCX 133 KB)

References

  1. 1.
    H. Wang, R. Liu, K. Chen, X. Shi, Z. Xu, Electrodeposition and characterization of CaF2 and rare earth doped CaF2 films. Thin solid Films 519, 6438–6442 (2011)CrossRefGoogle Scholar
  2. 2.
    Z. Gu, L. Yan, G. Tian, S.J. Li, Z.F. Chai, Y. L. Zhao, Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25, 3758–3779 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Zhang, J.H. Xia, Y. Jiang, S. Yang, H. Jiang, B. Chen, Efficient quantum cutting in Tb3+/Yb3+ codoped α-NaYF4 single crystals grown by bridgman method using KF Flux for solar photovoltaic. IEEE J. Quant. Elect. 51, 6 (2015)CrossRefGoogle Scholar
  4. 4.
    Q.H. Wang, M. Bass, Photo-luminescent screens for optically written displays based on upconversion of near infrared light. Electron. Lett. 40, 987–988 (2004)CrossRefGoogle Scholar
  5. 5.
    F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130(17), 5642–5643 (2008)CrossRefGoogle Scholar
  6. 6.
    P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, X. Chen, Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew. Chem. 53, 1252–1257 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Chen, H. Liu, H. Liang, G. Somesfalean, Z. Zhang Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C 112(31), 12030–12036 (2008)CrossRefGoogle Scholar
  8. 8.
    W. Liu, Z. Hao, L. Zhang, H. Wu, X. Zhang, Y. Luo, G. Pan, H. Zhao, Z. Fu, J. Zhang, Inhomogeneous-broadening-induced intense upconversion luminescence in Tm3+ and Yb3+ codoped Lu2O3–ZrO2 disordered crystals. Inorg. Chem. 56(20), 12291–12296 (2017)CrossRefGoogle Scholar
  9. 9.
    M.E. Calixto, A. Méndez-Blas, B. Mari, CaF2 thin films obtained by electrochemical processes and the effect of Tb3+ doping concentration on their structural and optical properties. J. Solid State Electrochem. 22, 2465–2472 (2018)CrossRefGoogle Scholar
  10. 10.
    D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, X. Chen, Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals. Angew. Chem. Int. Ed. 52, 1128 – 1133 (2013)CrossRefGoogle Scholar
  11. 11.
    W.G.J.H.M. van Sark, J. de Wild, J.K. Rath, A. Meijerink, R. EI Schropp, Upconversion in solar cells. Nanoscale Res. Lett. 8, 81 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Li, Z. Quan, J. Yang, P. Yang, J. Lin, Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorg. Chem. 46(16), 6329–6337 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Chong, T. Hirai, T. Kawai, S. Hashimoto, N. Ohno, Optical properties of Bi3+ ions doped in NaYF4. J Lumin 122–123, 149–151 (2007)CrossRefGoogle Scholar
  14. 14.
    B. Huang, H. Dong, K.L. Wong, L.D. Sun, C.H. Yan, Fundamental view of electronic structures of β–NaYF4, β–NaGdF4, and β–NaLuF4. J. Phys. Chem. C 120, 18858–18870 (2016)CrossRefGoogle Scholar
  15. 15.
    J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, H.U. Güdel, Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 117, 1–12 (2006)CrossRefGoogle Scholar
  16. 16.
    C. Wang, H. Xia, Z. Feng, Z. Zhang, D. Jiang, J. Zhang, S. He, Q. Tang, Q. Sheng, X. Gu, Y. Zhang, B. Chen, H. Jiang, Infrared spectral properties for α-NaYF4 single crystal of various Er3+ doping concentrations. Opt. Laser Technol. 82, 157–162 (2016,)CrossRefGoogle Scholar
  17. 17.
    J. Zhang, H. Xia, Y. Jiang, S. Yang, H. Jiang, B. Chen, Efficient quantum cutting in Tb3+/Yb3+ codoped α-NaYF4 single crystals grown by Bridgman method using KF flux for solar photovoltaic. IEEE J. Quantum Electron. 51, 6 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Prorok, A. Gnach, A. Bednarkiewicz, W. Stręk, Energy up-conversion in Tb3+/Yb3+ co-doped colloidal α-NaYF4 nanocrystals. J. Lumin. 140, 103–109 (2013)CrossRefGoogle Scholar
  19. 19.
    F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010)CrossRefGoogle Scholar
  20. 20.
    G.S. Yi, G.M. Chow, Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Func. Mater 16, 2324–2329 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Shan, Y. Ju, A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb, Er upconversion nanophosphors. Nanotechnology 20(27), 275603 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Shan, X. Qin, N. Yao, Y. Ju, Synthesis of monodisperse hexagonal NaYF4:Yb, Ln (Ln = Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology 18, 445607 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Sui, K. Tao, Q. Tian, K. Sun, Interaction between Y3+ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF4 nanocrystals. J. Phys. Chem. C 116, 1732–1739 (2012)CrossRefGoogle Scholar
  24. 24.
    F. Liu, E. Ma, D. Chen, Y. Yu, and Y. Wang Tunable red-green upconversion luminescence in novel transparent glass ceramics containing Er:NaYF4 nanocrystals. J. Phys. Chem. B 110, 20843–20846 (2006)CrossRefGoogle Scholar
  25. 25.
    H. Park, G.Yeol Yoo, M.-S. Kim, K. Kim, C. Lee, S. Park, W. Kim, Thin film fabrication of upconversion lanthanide-doped NaYF4 by a sol-gel method and soft lithographical nanopatterning. J. Alloy. Compd. 728, 927–935 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Jia, C. Xu, J. Wang, P. Chen, X. Liu, J. Qiu, Synthesis of NaYF4:Yb–Tm thin film with strong NIR photon up-conversion photoluminescence using electro-deposition method. CrystEngComm 16, 4023–4028 (2014)CrossRefGoogle Scholar
  27. 27.
    L.F. Mollenauer, J.C. White, C.R. Pollock, Tunable Lasers (Topics in applied Physics), vol. 59, 2nd edn. (Springer, New York, 1992)Google Scholar
  28. 28.
    R.C. Stoneman, L. Esterowitz, Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. Opt. Lett. 15(9), 486–488 (1990)CrossRefGoogle Scholar
  29. 29.
    S. Heer, K. Kömpe, H.U. Güdel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv.Mater 16, 23–24 (2004)CrossRefGoogle Scholar
  30. 30.
    K.W. Kramer, D. Biner, G. Frei, H.U. Gudel, M.P. Hehlen, S.R. Luthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004)CrossRefGoogle Scholar
  31. 31.
    G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, L.H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 4(11), 2191–2196 (2004)CrossRefGoogle Scholar
  32. 32.
    R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A32, 751–767 (1976)Google Scholar
  33. 33.
    B. Henderson, R. Bartram, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University Press, New York, 2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de FísicaBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations