Design and development of TiO2-Fe0 nanoparticle-immobilized nanofibrous mat for photocatalytic degradation of hazardous water pollutants

  • Hridam Deb
  • Mohammad Neaz MorshedEmail author
  • Shili XiaoEmail author
  • Shamim Al Azad
  • Zhicheng Cai
  • Arsalan Ahmed


This study introduces, a titanium dioxide (TiO2) and zerovalent iron (Fe0) nanoparticles immobilized electrospun poly (acrylic acid)/poly (vinyl alcohol) (PAA/PVA) nanofibrous mat for photocatalytic degradation of hazardous water pollutant. For that, PAA/PVA nanofibrous mat was prepared by electrospinning followed by crosslinking and immobilization/incorporation of TiO2 and Fe0 nanoparticles through Layer-by-Layer (LbL) self-assembly method. The obtained PAA/PVA–TiO2 and PAA/PVA–TiO2–Fe0 was fully characterized by scanning electron microscopy (SEM), FTIR, TGA and porosity analysis. The results showed successful immobilization of both (TiO2 and Fe0) nanoparticles on the nanofibrous mat with uniform distribution. The latter exhibited catalytic activity towards the degradation of Methyl Blue (MB) and Brilliant Green (BG) dyes separately and mixed in the presence of UV light. UV–Vis spectroscopic analysis was used to monitor and quantitative analysis of the degradation. It has been found that high photocatalytic activity of the functional nanofibrous mats has been observed. The fastest conversion rate reached to 99.2% in 20 min at a rate constant of 0.0847/min providing adequate reusability of the nanofiber mats up to four consecutive cycles. A mechanism of the photocatalytic activities has been proposed by referring to the above results. The results opened a promising prospect for using nanofibrous based effective photocatalyst for environmental application.


  1. 1.
    C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6, 7959–7970 (2014)CrossRefGoogle Scholar
  2. 2.
    C. Fernández, M.S. Larrechi, M.P. Callao, An analytical overview of processes for removing organic dyes from wastewater effluents. TrAC Trends Anal. Chem. 29, 1202–1211 (2010)CrossRefGoogle Scholar
  3. 3.
    P. Kovacic, R. Somanathan, Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J. Appl. Toxicol. 34, 810–824 (2014)CrossRefGoogle Scholar
  4. 4.
    H.-Y. Xu, W.-C. Liu, J. Shi, H. Zhao, S.-Y. Qi, Photocatalytic discoloration of Methyl Orange by anatase/schorl composite: optimization using response surface method. Environ. Sci. Pollut. Res. 21, 1582–1591 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Cao, C. Zhou, H. Lin, B. Xu, S. Chen, Direct hydrolysis preparation of plate-like BiOI and their visible light photocatalytic activity for contaminant removal. Mater. Lett. 109, 74–77 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Sharma, R. Ameta, R. Malkani, S.C. Ameta, Use of semi-conducting bismuth sulfide as a photocatalyst for degradation of Rose Bengal. Maced. J. Chem. Chem. Eng. 30, 229–234 (2011)Google Scholar
  7. 7.
    N. Muhd Julkapli, S. Bagheri, S. Bee Abd, Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J., 2014, 25 (2014)CrossRefGoogle Scholar
  8. 8.
    S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19, 1761–1769 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Sambandam, A. Surenjan, L. Philip, T. Pradeep, Rapid synthesis of C–TiO2: tuning the shape from spherical to rice grain morphology for visible light photocatalytic application. ACS Sustain. Chem. Eng. 3, 1321–1329 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Lüddeke, S. Heß, C. Gallert, J. Winter, H. Güde, H. Löffler, Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques. Water Res. 69, 243–251 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Qu, J. Brame, Q. Li, P.J. Alvarez, Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Accounts Chem. Res. 46, 834–843 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113, 7728–7768 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Liu, J. Zheng, Q. Liu, S. Xu, M. Wu, Q. Xue, Z. Yan, H. Xiao, Z. Wei, H. Zhu, The preparation, load and photocatalytic performance of N-doped and CdS-coupled TiO2. RSC Adv. 3, 9483–9489 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Guo, L.T. Meng, C.H. Wang, Core-shell WO3/TiO2 nanorod heterostructures for solar light photocatalysis. Adv. Mater. Res. 850, 78–81 (2014)Google Scholar
  15. 15.
    K. Ullah, S. Ye, L. Zhu, Z.-D. Meng, S. Sarkar, W.-C. Oh, Microwave assisted synthesis of a noble metal-graphene hybrid photocatalyst for high efficient decomposition of organic dyes under visible light. Mater. Sci. Eng. B 180, 20–26 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Adhikari, G. Gyawali, S.H. Cho, R. Narro-García, T. Sekino, S.W. Lee, Er3+/Yb3+ co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity. J. Solid State Chem. 209, 74–81 (2014)CrossRefGoogle Scholar
  17. 17.
    J.G. McEvoy, W. Cui, Z. Zhang, Synthesis and characterization of Ag/AgCl—activated carbon composites for enhanced visible light photocatalysis. Appl. Catal. B 144, 702–712 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Azzouz, S. Nousir, N. Bouazizi, R. Roy, Metal–inorganic–organic matrices as efficient sorbents for hydrogen storage. ChemSusChem 8, 800–803 (2015)CrossRefGoogle Scholar
  19. 19.
    N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, A. Azzouz, Zinc oxide incorporating iron nanoparticles with improved conductance and capacitance properties. J. Mater. Sci. 27, 11168–11175 (2016)Google Scholar
  20. 20.
    N. Bouazizi, R. Bargougui, P. Thebault, T. Clamens, F. Desriac, F. Fioresi, G. Ladam, S. Morin-Grognet, N. Mofaddel, O. Lesouhaitier, Development of a novel functional core-shell-shell nanoparticles: from design to anti-bacterial applications. J. Coll. Interface Sci. 513, 726–735 (2018)CrossRefGoogle Scholar
  21. 21.
    B. Nabil, N.M. Mohammad, N. Behary, C. Christine, V. Julien, O. Thoumire, A. Abdelkrim, Development of new multifunctional filter based nonwovens for organics pollutants reduction and detoxification: high catalytic and antibacterial activities. Chem. Eng. J. 356, 702–716 (2018)CrossRefGoogle Scholar
  22. 22.
    N. Bouazizi, A. El achari, C. Campagne, J. Vieillard, A. Azzouz, Copper oxide coated polyester fabrics with enhanced catalytic properties towards the reduction of 4-nitrophenol. J. Mater. Sci. 29, 1–12 (2018)Google Scholar
  23. 23.
    J.-L. Gong, B. Wang, G.-M. Zeng, C.-P. Yang, C.-G. Niu, Q.-Y. Niu, W.-J. Zhou, Y. Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 164, 1517–1522 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Peralta-Hernández, Y. Meas-Vong, F.J. Rodríguez, T.W. Chapman, M.I. Maldonado, L.A. Godínez, Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decolorization and destruction of Orange II azo dye in dilute solution. Dyes Pigm. 76, 656–662 (2008)CrossRefGoogle Scholar
  25. 25.
    O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177 (2004)CrossRefGoogle Scholar
  26. 26.
    X. Zhang, L. Lei, J. Zhang, Q. Chen, J. Bao, B. Fang, A novel CdS/S–TiO2 nanotubes photocatalyst with high visible light activity. Sep. Purif. Technol. 66, 417–421 (2009)CrossRefGoogle Scholar
  27. 27.
    P.V. Bedja, Kamat, Capped semiconductor colloids. synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites. J. Phys. Chem. 99, 9182–9188 (1995)CrossRefGoogle Scholar
  28. 28.
    D.J. Norris, A.L. Efros, S.C. Erwin, Doped nanocrystals. Science 319, 1776–1779 (2008)CrossRefGoogle Scholar
  29. 29.
    R. Ali, S.H. Hassan, Degradation studies on paraquat and malathion using TiO2/ZnO based photocatalyst. Malaysian J. Anal. Sci. 12, 77–87 (2008)Google Scholar
  30. 30.
    K. Soutsas, V. Karayannis, I. Poulios, A. Riga, K. Ntampegliotis, X. Spiliotis, G. Papapolymerou, Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. Desalination 250, 345–350 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10–18 (2009)CrossRefGoogle Scholar
  32. 32.
    R. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127, 7143–7154 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Arana, O.G. Dıaz, M.M. Saracho, J.D. Rodrıguez, J.H. Melián, J.P. Peña, Photocatalytic degradation of formic acid using Fe/TiO2 catalysts: the role of Fe3+/Fe2+ ions in the degradation mechanism. Appl. Catal. B 32, 49–61 (2001)CrossRefGoogle Scholar
  34. 34.
    H. Měšt’ánková, G. Mailhot, J. Jirkovský, J. Krýsa, M. Bolte, Mechanistic approach of the combined (iron–TiO2) photocatalytic system for the degradation of pollutants in aqueous solution: an attempt of rationalisation. Appl. Catal. B 57, 257–265 (2005)CrossRefGoogle Scholar
  35. 35.
    A.-G. Rincón, C. Pulgarin, Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl. Catal. B 63, 222–231 (2006)CrossRefGoogle Scholar
  36. 36.
    Y. Yu, C.Y. Jimmy, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong, Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A 289, 186–196 (2005)CrossRefGoogle Scholar
  37. 37.
    F. He, D. Zhao, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ. Sci. Technol. 41, 6216–6221 (2007)CrossRefGoogle Scholar
  38. 38.
    W. Zhang, C.-B. Wang, H.-L. Lien, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 40, 387–395 (1998)CrossRefGoogle Scholar
  39. 39.
    B. Schrick, J.L. Blough, A.D. Jones, T.E. Mallouk, Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel–iron nanoparticles. Chem. Mater. 14, 5140–5147 (2002)CrossRefGoogle Scholar
  40. 40.
    Y.-H. Tee, E. Grulke, D. Bhattacharyya, Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Indus. Eng. Chem. Res. 44, 7062–7070 (2005)CrossRefGoogle Scholar
  41. 41.
    J. Xu, D. Bhattacharyya, Membrane-based bimetallic nanoparticles for environmental remediation: Synthesis and reactive properties. Environ. Prog. 24, 358–366 (2005)CrossRefGoogle Scholar
  42. 42.
    Y. Xu, W. Zhang, Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res. 39, 2238–2244 (2000)CrossRefGoogle Scholar
  43. 43.
    P. Varanasi, A. Fullana, S. Sidhu, Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66, 1031–1038 (2007)CrossRefGoogle Scholar
  44. 44.
    C.-B. Wang, W.-X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156 (1997)CrossRefGoogle Scholar
  45. 45.
    S.R. Kanel, J.-M. Greneche, H. Choi, Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40, 2045–2050 (2006)CrossRefGoogle Scholar
  46. 46.
    S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34, 2564–2569 (2000)CrossRefGoogle Scholar
  47. 47.
    X. Li, D.G. Brown, W. Zhang, Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J. Nanopart. Res. 9, 233–243 (2007)CrossRefGoogle Scholar
  48. 48.
    W.J. Epolito, H. Yang, L.A. Bottomley, S.G. Pavlostathis, Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4. J. Hazard. Mater. 160, 594–600 (2008)CrossRefGoogle Scholar
  49. 49.
    J. Fan, Y. Guo, J. Wang, M. Fan, Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J. Hazard. Mater. 166, 904–910 (2009)CrossRefGoogle Scholar
  50. 50.
    J.G. Darab, A.B. Amonette, D.S. Burke, R.D. Orr, S.M. Ponder, B. Schrick, T.E. Mallouk, W.W. Lukens, D.L. Caulder, D.K. Shuh, Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron. Chem. Mater. 19, 5703–5713 (2007)CrossRefGoogle Scholar
  51. 51.
    G. Naja, A. Halasz, S. Thiboutot, G. Ampleman, J. Hawari, Degradation of hexahydro-1, 3, 5-trinitro-1, 3,5-triazine (RDX) using zerovalent iron nanoparticles. Environ. Sci. Technol. 42, 4364–4370 (2008)CrossRefGoogle Scholar
  52. 52.
    G. Kim, W. Jeong, S. Choe, Dechlorination of atrazine using zero-valent iron (Fe0) under neutral pH conditions. J. Hazard. Mater. 155, 502–506 (2008)CrossRefGoogle Scholar
  53. 53.
    N.M. Mahmoodi, M. Arami, Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J. Photochem. Photobiol. B 94, 20–24 (2009)CrossRefGoogle Scholar
  54. 54.
    A.K. Ray, A.A. Beenackers, Novel photocatalytic reactor for water purification. AIChE J. 44, 477–483 (1998)CrossRefGoogle Scholar
  55. 55.
    H. Deb, S. Xiao, M.N. Morshed, S. Al Azad, Immobilization of cationic titanium dioxide (TiO2+) on electrospun nanofibrous mat: synthesis, characterization, and potential environmental application. Fibers Polymers 19, 1715–1725 (2018)CrossRefGoogle Scholar
  56. 56.
    X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, G. Zhao, Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. J. Hazard. Mater. 169, 1061–1067 (2009)CrossRefGoogle Scholar
  57. 57.
    Galperin, Dynamic mechanical properties of a TiO2-filled crosslinked epoxy resin from 20 to 90 °C. J. Appl. Polym. Sci. 11, 1475–1481 (1967)CrossRefGoogle Scholar
  58. 58.
    E. Santala, M. Kemell, M. Leskelä, M. Ritala, The preparation of reusable magnetic and photocatalytic composite nanofibers by electrospinning and atomic layer deposition. Nanotechnology 20, 035602 (2008)CrossRefGoogle Scholar
  59. 59.
    N.N. Fathima, R. Aravindhan, J.R. Rao, B.U. Nair, Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: a heterogeneous catalytic approach. Chemosphere 70, 1146–1151 (2008)CrossRefGoogle Scholar
  60. 60.
    H. Sassi, G. Lafaye, H. Ben Amor, A. Gannouni, M.R. Jeday, J. Barbier, Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front. Environ. Sci. Eng. 12, 2 (2018)CrossRefGoogle Scholar
  61. 61.
    J. Li, C. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012)CrossRefGoogle Scholar
  62. 62.
    A. Shukla, R.K. Singha, T. Sasaki, R. Bal, Nanocrystalline Pt–CeO2 as an efficient catalyst for a room temperature selective reduction of nitroarenes. Green Chem. 17, 785–790 (2015)CrossRefGoogle Scholar
  63. 63.
    Z. Jiang, D. Jiang, W. Wei, Z. Yan, J. Xie, Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe2O3 for cooperative catalytic applications. J. Mater. Chem. A 3, 23607–23620 (2015)CrossRefGoogle Scholar
  64. 64.
    H.-L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu, Au@ ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework. J. Am. Chem. Soc. 131, 11302–11303 (2009)CrossRefGoogle Scholar
  65. 65.
    H.-L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core–shell nanoparticles stabilized on metal – organic framework. J. Am. Chem. Soc. 133, 1304–1306 (2011)CrossRefGoogle Scholar
  66. 66.
    E. Mirzadeh, K. Akhbari, Synthesis of nanomaterials with desirable morphologies from metal–organic frameworks for various applications. CrystEngComm 18, 7410–7424 (2016)CrossRefGoogle Scholar
  67. 67.
    M. Jahan, Z. Liu, K.P. Loh, A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Func. Mater. 23, 5363–5372 (2013)CrossRefGoogle Scholar
  68. 68.
    A. Dhakshinamoorthy, M. Opanasenko, J. Čejka, H. Garcia, Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal. Sci. Technol. 3, 2509–2540 (2013)CrossRefGoogle Scholar
  69. 69.
    Y. Zhao, D.-S. Deng, L.-F. Ma, B.-M. Ji, L.-Y. Wang, A new copper-based metal–organic framework as a promising heterogeneous catalyst for chemo-and regio-selective enamination of β-ketoesters. Chem. Commun. 49, 10299–10301 (2013)CrossRefGoogle Scholar
  70. 70.
    N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010)CrossRefGoogle Scholar
  71. 71.
    S. Xiao, X. Luo, Q. Peng, H. Deb, Effective removal of calcium ions from simulated hard water using electrospun polyelectrolyte nanofibrous mats. Fibers Polymers 17, 1428–1437 (2016)CrossRefGoogle Scholar
  72. 72.
    S. Xiao, M. Shen, R. Guo, Q. Huang, S. Wang, X. Shi, Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J. Mater. Chem. 20, 5700–5708 (2010)CrossRefGoogle Scholar
  73. 73.
    S. Xiao, M. Shen, R. Guo, S. Wang, X. Shi, Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J. Phys. Chem. C 113, 18062–18068 (2009)CrossRefGoogle Scholar
  74. 74.
    L. Li, Y.-L. Hsieh, Ultra-fine polyelectrolyte hydrogel fibres from poly (acrylic acid)/poly (vinyl alcohol). Nanotechnology 16, 2852 (2005)CrossRefGoogle Scholar
  75. 75.
    K. Kumeta, I. Nagashima, S. Matsui, K. Mizoguchi, Crosslinking reaction of poly (vinyl alcohol) with poly (acrylic acid)(PAA) by heat treatment: effect of neutralization of PAA. J. Appl. Polym. Sci. 90, 2420–2427 (2003)CrossRefGoogle Scholar
  76. 76.
    W. He, Z. Ma, T. Yong, W.E. Teo, S. Ramakrishna, Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26, 7606–7615 (2005)CrossRefGoogle Scholar
  77. 77.
    J. Zeng, H. Hou, J.H. Wendorff, A. Greiner, Electrospun poly (vinyl alcohol)/poly (acrylic acid) fibres with excellent water-stability. e-polymers, 4, 1 (2004)CrossRefGoogle Scholar
  78. 78.
    H. Ma, Y. Huang, M. Shen, D. Hu, H. Yang, M. Zhu, S. Yang, X. Shi, Enhanced decoloration efficacy of electrospun polymer nanofibers immobilized with Fe/Ni bimetallic nanoparticles. RSC Adv. 3, 6455–6465 (2013)CrossRefGoogle Scholar
  79. 79.
    S. Xiao, S. Wu, M. Shen, R. Guo, Q. Huang, S. Wang, X. Shi, Polyelectrolyte multilayer-assisted immobilization of zero-valent iron nanoparticles onto polymer nanofibers for potential environmental applications. ACS Appl. Mater. Interfaces 1, 2848–2855 (2009)CrossRefGoogle Scholar
  80. 80.
    M.N. Morshed, X. Shen, H. Deb, S.A. Azad, X. Zhang, R. Li, Sonochemical fabrication of nanocryatalline titanium dioxide (TiO2) in cotton fiber for durable ultraviolet resistance, J. Nat. Fibers, (2018) Google Scholar
  81. 81.
    T.C. Wang, M.F. Rubner, R.E. Cohen, Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size. Langmuir 18, 3370–3375 (2002)CrossRefGoogle Scholar
  82. 82.
    X. Zhang, H. Wang, Z. Su, Fabrication of Au@ Ag core–shell nanoparticles using polyelectrolyte multilayers as nanoreactors. Langmuir, 28, 15705–15712 (2012)CrossRefGoogle Scholar
  83. 83.
    M. Li, Q. Gao, T. Wang, Y.-S. Gong, B. Han, K.-S. Xia, C.-G. Zhou, Solvothermal synthesis of MnxFe3−xO4 nanoparticles with interesting physicochemical characteristics and good catalytic degradation activity. Mater. Des. 97, 341–348 (2016)CrossRefGoogle Scholar
  84. 84.
    S.K. Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A 268, 61–66 (2004)CrossRefGoogle Scholar
  85. 85.
    N. Bouazizi, J. Vieillard, R. Bargougui, N. Couvrat, O. Thoumire, S. Morin, G. Ladam, N. Mofaddel, N. Brun, A. Azzouz, Entrapment and stability of iron nanoparticles within APTES modified graphene oxide sheets with improved catalytic activity. J. Alloys Compd. 771, 1090–1102 (2018)CrossRefGoogle Scholar
  86. 86.
    F. Jamali-Sheini, R. Yousefi, N.A. Bakr, M. Cheraghizade, M. Sookhakian, N.M. Huang, Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies. Mater. Sci. Semicond. Process. 32, 172–178 (2015)CrossRefGoogle Scholar
  87. 87.
    M.M. Khan, J. Lee, M.H. Cho, Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J. Ind. Eng. Chem. 20, 1584–1590 (2014)CrossRefGoogle Scholar
  88. 88.
    R. Li, Y. Jia, N. Bu, J. Wu, Q. Zhen, Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics. J. Alloy. Compd. 643, 88–93 (2015)CrossRefGoogle Scholar
  89. 89.
    S. Munusamy, R. sai laxmi Aparna, R. Gunneswara Subramanya Vara Prasad, Photocatalytic effect of TiO2 and the effect of dopants on degradation of brilliant green. Sustain. Chem. Process. 1, 4 (2013)CrossRefGoogle Scholar
  90. 90.
    S. Sood, A. Umar, S.K. Mehta, A. Sinha, S.K. Kansal, Efficient photocatalytic degradation of brilliant green using Sr-doped TiO2 nanoparticles. Ceram. Int. 41, 3533–3540 (2015)CrossRefGoogle Scholar
  91. 91.
    B.H. Shambharkar, A.P. Chowdhury, Ethylene glycol mediated synthesis of Ag 8 SnS 6 nanoparticles and their exploitation in the degradation of eosin yellow and brilliant green. RSC Adv. 6, 10513–10519 (2016)CrossRefGoogle Scholar
  92. 92.
    S. Ragupathy, T. Sathya, Photocatalytic decolourization of brilliant green by Ni doped SnO2 nanoparticles. J. Mater. Sci. 29, 8710–8719 (2018)Google Scholar
  93. 93.
    B. Tryba, Immobilization of TiO2 and Fe–C–TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J. Hazard. Mater. 151, 623–627 (2008)CrossRefGoogle Scholar
  94. 94.
    S. Weiren, Z. Wenkuan, H. Fei, F. Youling, TiO2 based photocatalysis and its applications for waste water treatment. Prog. Chem. (1998). Google Scholar
  95. 95.
    N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, M.Z.-C. Hu, Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Indus. Eng. Chem. Res. 38, 373–379 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of New Textile Materials and Advanced Technology, School of Textile Science and EngineeringWuhan Textile UniversityWuhanChina
  2. 2.College of Materials and TextilesZhejiang Sci-Tech UniversityHangzhouChina
  3. 3.College of Chemistry and Chemical EngineeringWuhan Textile UniversityWuhanChina

Personalised recommendations