Advertisement

Tensile characteristics of Sn–5wt%Sb–1.5wt%Ag reinforced by nano-sized ZnO particles

  • M. M. Mansour
  • A. FawzyEmail author
  • L. A. Wahab
  • G. Saad
Article

Abstract

In this study the impact of adding 0.3 wt% ZnO nano-sized particles into Sn–5wt%Sb–1.5wt%Ag (SSA) lead free solder (LFS) was investigated for microstructure, thermal and tensile stress strain characteristics. The microstructure of both the plain and composite LFS was examined by utilizing the optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The addition of ZnOnano-sized particles drastically changed the microstructure and improved the tensile response of SSA LFS. The microstructure investigations showed the formation of the intermetallic compounds (IMCs) Ag3Sn and SnSb. Sizes of the formed IMCs were found finer in the ZnO-contained solder. In this work the alloy under investigation exhibited better tensile response with the refined IMC particle. Thermal analysis of the composite solder revealed a slight decrease (0.08 °C) in freezing point, low pasty range (6.55 °C) and low degree of undercooling (3.39 °C). These findings are expected to supply a correct guideline and reference in producing of electronic packages.

References

  1. 1.
    A.R. Geranmayeh, G. Nayyeri, R. Mahmudi, Mater. Sci. Eng. A 547, 110–119 (2012)CrossRefGoogle Scholar
  2. 2.
    A.B. El Basaty, A.M. Deghady, E.A. Eid, Mater. Sci. Eng. A 701, 245–253 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Abtewa, G. Selvaduray, Mater. Sci. Eng. R 27, 95–141 (2000) 288–290 CrossRefGoogle Scholar
  4. 4.
    K.J. Puttlitz, K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Marcel Dekker, Inc, New York, 2004), pp. 292–294CrossRefGoogle Scholar
  5. 5.
    K. Suganuma, K.S. Kim, J. Mater. Sci. 18, 121–127 (2007)Google Scholar
  6. 6.
    A.A. El-Daly, Y. Swilem, A.E. Hammad, J. Alloys Compd. 471, 98–104 (2009)CrossRefGoogle Scholar
  7. 7.
    A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 5, 975–984 (2011)CrossRefGoogle Scholar
  8. 8.
    L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang, Mter. Des. 31, 4831–4835 (2010) 10 )Google Scholar
  9. 9.
    S. Chellvarajoo, M.Z. Abdullah, Mater. Des. 90, 499–507 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Tang, G.Y. Li, Y.C. Pan, J. Alloys Compds. 554, 195–203 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Kangooe, R. Mahmudi, A.R. Geranmayeh, J. Electron. Mater. 39, 2 (2010)Google Scholar
  12. 12.
    E.A. Eid, A.N. Fouda, M. El-Shazly, Duraia, Mater. Sci. Eng. A 657, 104–114 (2016)CrossRefGoogle Scholar
  13. 13.
    R.K. Shiue, L.W. Tsay, C.L. Lin, J.L. Ou, J. Mater. Sci. 38, 1269 (2003)CrossRefGoogle Scholar
  14. 14.
    A.N. Fouda, E.A. Eid, Mater. Sci. Eng. A 632, 82–87 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Gao, T. Takemoto, H. Nishikawa, Mater. Sci. Eng. A420, 39–46 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Ji, Z. Fan, Metall. Mater. Trans. A 33A, 3511–3520 (2002)CrossRefGoogle Scholar
  17. 17.
    G.S. Al-Ganainy, A.A. El-Daly, A. Fawzy, N. Hussein, J. Mater. Sci. 28, 13303–13312 (2017)Google Scholar
  18. 18.
    A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, G. Saad, Mater. Sci. Eng. A 603, 1–10 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, G. Saad, J. Mater. Sci. 24, 3210–3218 (2013)Google Scholar
  20. 20.
    P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Mater. Sci. 20, 571–576 (2009)Google Scholar
  21. 21.
    A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, A.A. Ibrahiem, Mater. Des. 56(–), 594–603 (1980) 2015)Google Scholar
  22. 22.
    M.F. Ashby, Surf. Sci. 31, 498 (1972)CrossRefGoogle Scholar
  23. 23.
    L.C. Tsao, S.Y. Chang, Mater. Des. 31, 990 (2010)CrossRefGoogle Scholar
  24. 24.
    D.Q. Yu, L. Wang, C.L. Wu, C.M.T. Law, J. Alloy Compd. 389, 153 (2005)CrossRefGoogle Scholar
  25. 25.
    L.C. Tsao, J. Alloy Compd. 509, 2326 (2011)CrossRefGoogle Scholar
  26. 26.
    A.A. El-Daly, T.A. Elmosalami, W.M. Desoky, M.G. El-Shaarawy, A.M. Abdraboh, Mater. Sci. Eng. A 618, 389–397 (2014)CrossRefGoogle Scholar
  27. 27.
    A.R. Geranmayeha, R. Mahmudi, M. Kangooie, Mater. Sci. Eng. A528, 3967–3972 (2011)CrossRefGoogle Scholar
  28. 28.
    K. M. Kumar, V. Kripesh, A.A. Tay, J. Alloy Compd. 455, 148–158 (2008)CrossRefGoogle Scholar
  29. 29.
    F.A. Mirza, D.L. Chen, Materials 8, 5138–5153 (2015)CrossRefGoogle Scholar
  30. 30.
    X.L. Zhong, W.L.E. Wong, M. Gupta, Acta Mater. 55, 6338–6344 (2007)CrossRefGoogle Scholar
  31. 31.
    Khin, SandarTun, M. Gupta, Compos. Sci. Technol. 67, 2657–2664 (2007)CrossRefGoogle Scholar
  32. 32.
    J. Shen, Y.C. Chan, J. Alloy Compd. 477, 552–559 (2009)CrossRefGoogle Scholar
  33. 33.
    A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Mater. Des. 55, 837–845 (2014)CrossRefGoogle Scholar
  34. 34.
    A.A. El Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Mater. Sci. Eng. A 578, 62–71 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Wiese, K.J. Wolter, Microelectron. Reliab. 47, 223 (2007)CrossRefGoogle Scholar
  36. 36.
    J. Rodney, McCabe, M.E. Fine, Metall. Mater. Trans. A 33(5), 1531–1539 (2002)CrossRefGoogle Scholar
  37. 37.
    R. Mahmudi, A.R. Geranmayeh, H. Noori, M. Shahabi, Mater. Sci. Eng. A 491, 110–116 (2008)CrossRefGoogle Scholar
  38. 38.
    S.M.L. Nai, J. Wei, M. Gupta, Thin Solid Films 504, 401–404 (2006)CrossRefGoogle Scholar
  39. 39.
    P. Liu, P. Yao, J. Liu, J. Electron. Mater. 37(6), 874–879 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of EducationAin Shams UniversityCairoEgypt
  2. 2.Department of PhysicsNational Centre for Radiation Research and TechnologyCairoEgypt

Personalised recommendations