Advertisement

Facile synthesis of Fe3O4/PANI rod/rGO nanocomposites with giant microwave absorption bandwidth

  • Yibing Ma
  • Yaya Zhou
  • Zhiyuan Xiong
  • Youyi SunEmail author
  • Chunhong Qi
  • Yinghe Zhang
  • Yaqing LiuEmail author
Article
  • 14 Downloads

Abstract

The Fe3O4/PANI rod/rGO nanocomposites were prepared by a new synthesis process, and their microwave absorbing properties were further evaluated. Taking advantage of the synergistic effects of the different components in the nanocomposites and the merits of the proposed synthesis strategies, the Fe3O4/PANI rod/rGO nanocomposites showed excellent microwave absorption performance, especially for obtaining giant absorption bandwidth (ca. 14.6 GHz, <− 10 dB). The work does not only confirm the formation of Fe3O4/PANI rod/rGO nanocomposites with wide absorption frequency range, strong absorption property and lightweight, but also provide a new synthesis process of electromagnetic wave absorbents for large-scale production.

Notes

Acknowledgements

The authors are grateful for the support of the National Natural Science Foundation of China under grants (51773184 and U1810114), and the Shanxi Provincial Natural Science Foundation of China (201701D121046 and 201803D421081).

References

  1. 1.
    F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B 137, 260–277 (2018)CrossRefGoogle Scholar
  2. 2.
    T. Li, H. Liu, A simple synthesis method of nanocrystals CeO2 modified rGO composites as electrode materials for supercapacitors with long time cycling stability. Powder Technol. 327, 275–281 (2018)CrossRefGoogle Scholar
  3. 3.
    Y.Y. Sun, G.Z. Guo, B.H. Yang, X. Zhou, H.Y. Cui, Y.Q. Liu, G.Z.Zhao, Synthesis of polyaniline microrods with high microwave absorption behaviours. Micro Nano Lett. 5, 313–316 (2010)CrossRefGoogle Scholar
  4. 4.
    M. Jafarian, S.S.Seyyed Afghahi, Y. Atassi, M. Salehi, Enhanced microwave absorption characteristics of nanocomposite based on hollow carbonyl iron microspheres and polyaniline decorated with MWCNTs. J. Magn. Magn. Mater. 462, 153–159 (2018)CrossRefGoogle Scholar
  5. 5.
    P. Sambyal, S.K. Dhawan, P. Gairola, S.Singh Chauhan, S.P. Gairola, Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr. Appl. Phys. 18, 611–618 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)CrossRefGoogle Scholar
  7. 7.
    I.S. Unver, Z. Durmus, Magnetic and microwave absorption properties of magnetite (Fe3O4)@conducting polymer (PANI, PPY, PT) Composites, IEEE Trans. Magn. 2017, 53, 1–8CrossRefGoogle Scholar
  8. 8.
    J.H. Luo, Y. Xu, W. Yao, C.F. Jiang, J.G. Xu, Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos. Sci. Technol. 117, 315–321 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Wang, Y. Huang, C. Li, J.J. Chen, X. Sun, Enhanced microwave absorption properties of N-doped graphene@PANI nanorod arrays hierarchical structures modified by Fe3O4 nanoclusters. Synth. Met. 198, 300–307 (2014)CrossRefGoogle Scholar
  10. 10.
    P.B. Liu, Y. Huang, X. Zhang, Superparamagnetic Fe3O4 nanoparticles on graphene-polyaniline: synthesis, characterization and their excellent electromagnetic absorption properties. J. Alloy. Compd. 596, 25–31 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Zhao, J.P. Lin, J.P. Xiao, H.L. Fan, Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe3O4 nanocomposites. RSC Adv. 5, 19345–19352 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Cao, C. Han, X. Wang, M. Zhang, Y. Zhang, J. Shu, H. Yang, X. Fang, J. Yuan, Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 6(17), 4586–4602 (2018)CrossRefGoogle Scholar
  13. 13.
    G. Xin, H.D. Wei, W.Y. Sheng, Z. Wen, Z.Y. Kang, L.S. Lei, Synthesis and microwave absorption properties of graphene–oxide(GO)/polyaniline nanocomposite with Fe3O4 particles. Chin. Phys. B 24, 027803 (2015)CrossRefGoogle Scholar
  14. 14.
    W.D. Zhang, X. Zhang, Y.L. .Qiao, H.X. Yan, S.H. Qi, Covalently bonded GNPs-NH-PANI nanorod arrays modified by Fe3O4 nanoparticles as high-performance electromagnetic wave absorption Materials. Mater. Lett. 216, 101–105 (2018)CrossRefGoogle Scholar
  15. 15.
    X. Huang, J. Zhang, S. Xiao, G. Chen, The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber. J. Am. Ceram. Soc. 97(5), 1363–1366 (2014)CrossRefGoogle Scholar
  16. 16.
    D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 481–491 (2019)CrossRefGoogle Scholar
  17. 17.
    C.L. Hou, L. Gao, H.L. Yu, Y.Y. Sun, J.R. Yao, G.Z. Zhao, Y.Q.Liu, Preparation of magnetic rubber with high mechanical properties by latex compounding method. J. Magn. Magn. Mater. 407, 252–261 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.J. Zhang, H.J. Chi, W.H. Zhang, Y.Y. Sun, Q. Liang, Y. Gu, R.Y. Jing, Highly efficient adsorption of copper ions by a pvp-reduced graphene oxide based on a new adsorptions mechanism. Nano-Micro. Lett. 6(1), 80–87 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.Y. Sun, G.Z. Guo, B.H. Yang, Y. Tian, M.H. He, Y.Q. Liua, G.Z. Zhao, Facile synthesis of polyaniline micro-rods with high yield. Synth. Met. 161, 2206–2210 (2011)CrossRefGoogle Scholar
  20. 20.
    T.Chen,J.H. Qiu, K.J. Zhu, Y.C. Che, Y. Zhang, J.M. Zhang, H. Li, F. Wang, Z.Z. Wang, Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Sci.: Mater. Electron. 25, 3664–3673 (2014)Google Scholar
  21. 21.
    Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Q. Wang, Q.G. Wang, Synthesis of polyaniline nanorods and Fe3O4 microspheres on graphene nanosheets and enhanced microwave absorption performances. Mater. Chem. Phys. 209, 23–30 (2018)CrossRefGoogle Scholar
  22. 22.
    J. Mathew, M. Sathishkumar, N.K. Kothurkar, R. Senthilkumar, B.S. Narayanan, Polyaniline/Fe3O4-RGO nanocomposites for microwave absorption. Mater. Sci. Eng. 310, 012138 (2018)Google Scholar
  23. 23.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloy. Compd. 652, 346–350 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Sahaa, M. Mitra, A. Sarkara, D. Banerjee, S. Gangulyc, K. Karguptaa, Lithium assisted enhanced hydrogenation of reduced graphene oxide-PANI nanocomposite at room temperature. Diamond Related Mater. 84, 103–111 (2018)CrossRefGoogle Scholar
  25. 25.
    Y.Y. Sun, W.H. Zhang, H.L. .Yu, C.L. Hou, D.S. Li, Y.H. Zhang, Y.Q. Liu, Controlled synthesis various shapes Fe3O4 decorated reduced graphene oxide applied in the electrochemical detection. J. Alloy. Compd. 638, 182–187 (2015)CrossRefGoogle Scholar
  26. 26.
    T.T. Liu, G.Z. Zhao, W.H. Zhang, H.J. Chi, C.L. .Hou, Y.Y. Sun, The preparation of superhydrophobic graphene/melamine composite sponge applied in treatment of oil pollution. J. Porous Mater. 22, 1573–1580 (2015)CrossRefGoogle Scholar
  27. 27.
    J.L. Jin, Y.Y. Zhou, Z.Y. Xiong, G.Z. Guo, Y.Y. Sun, D. Li, Y.Q. Liu, Stable GQD@PANi nanocomposites based on benzenoid structure for enhanced specific capacitance. Int. J. Hydrog. Energy 43, 8426–8439 (2018)CrossRefGoogle Scholar
  28. 28.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 3(29), 7677–7690 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  30. 30.
    O.N. Shebanova, P. Lazor, Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J. Raman Spectrosc. 34, 845–852 (2003)CrossRefGoogle Scholar
  31. 31.
    Y.Y. Sun, G.Z. Guo, B.H. Yang, M.H. He, Y. Tian, J.C. .Cheng, Y.Q. Liu, Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. J. Mater. Res. 27, 457–462 (2012)CrossRefGoogle Scholar
  32. 32.
    X. Huang, J. Zhang, W. Rao, T. Sang, B. Song, C. Wong, Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites. J. Alloy. Compd. 662, 409–414 (2016)CrossRefGoogle Scholar
  33. 33.
    S.S. Kim, S.T. Kim, Y.C. Yoon, K.S. Lee, Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10F905 (2005)CrossRefGoogle Scholar
  34. 34.
    Y.L. Zhang, X.X. Wang, M.S. Cao, Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11, 1426–1436 (2018)CrossRefGoogle Scholar
  35. 35.
    Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. Mater. Electron. 29, 17122–17136 (2018)CrossRefGoogle Scholar
  36. 36.
    L. Liu, H. Zhang, J.C. Li, Y.H. Shen, C.P. Wang, L.G. Qiu, Y.P. Yuan, A.J. Xie, Porous Fe3O4/CuI/PANI nanosheets with excellent microwave absorption and hydrophobic property. Mater. Res. Bull. 53, 58–64 (2014)CrossRefGoogle Scholar
  37. 37.
    Z.F. He, Y. Fang, X.J. Wang, H. Pang, Microwave absorption properties of PANI/CIP/Fe3O4 composites. Synth. Met. 161, 420–425 (2011)CrossRefGoogle Scholar
  38. 38.
    S.W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym. Adv. Technol 20, 550–557 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanxi Province Key Laboratory of Functional NanocompositesNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.Department of Chemical and Bio-molecular EngineeringThe University of MelbourneMelbourneAustralia
  3. 3.Nanotechnology DepartmentHelmholtz AssociationHamburgGermany

Personalised recommendations