Advertisement

Investigation of optical, electrical and magnetic properties of Tb-doped ZnO nanorods

  • Nupur AggarwalEmail author
  • Ajay Vasishth
  • Kamaldeep Kaur
  • N. K. Verma
Article
  • 27 Downloads

Abstract

The hydrothermally synthesised nanorods of Zn1 − xTbxO(x = 0.00, 0.02, 0.05, 0.1) were carried over here to analyse the changes in its optical, magnetic and electrical behavior on doping. Formation of hexagonal wurtzite structure with particle size in the range of 36 nm–22 nm was confirmed by X-Ray diffraction studies. The morphology of the samples was confirmed by SEM (Scanning electron microscope) images alongwith its TEM (transmission electron microscope) micrographs. SAED (Selected area electron diffraction) and HRTEM (High resolution transmission electron microscope) shows the clear formation of nanorods. The quantitative analysis of elemental composition was done by energy dispersive X-ray spectroscopy (EDAX). The effect of increase in dopant concentration on band gap was analysed by UV-vis spectra; the band gap was found to be 3.35, 3.31, 3.30, 3.28 eV for undoped and 2%, 5% and 10% Tb-doped ZnO nanorods respectively. The presence of various types of defects was verified by PL study. The room temperature ferromagnetism behavior was tested by VSM and saturation magentization varies from 0.004 emu/g to 0.05 emu/g for undoped to 10% tb-doped ZnO nanorods. The dependence of resistivity on dopant concentration was carried out by four probe method which shows rise in resistivity with increasing dopant concentration.

References

  1. 1.
    Ritu, A simple and effective method for preparation and characterization of zinc oxide. Intermation J. Chem. Sci. 11(2), 1209–1218 (2013)Google Scholar
  2. 2.
    C. Klingshirn, ZnO: from basics towards applications. Phys. Status Solidi (b) 244(9), 3027–3073 (2007)Google Scholar
  3. 3.
    X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(12), 2768–2772 (2006)Google Scholar
  4. 4.
    J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, S. Wu, ZnO hollow spheres: preparation, characterization, and gas sensing properties. Sens. Actuators B 139(2), 411–417 (2009)Google Scholar
  5. 5.
    P.U. Aparna, N.K. Divya, P.P. Pradyumnan, Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J.Mater. Sci. Chem. Eng. 4(02), 79 (2016)Google Scholar
  6. 6.
    U. Godavarti, V.D. Mote, M. Dasari, Role of cobalt doping on the electrical conductivity of ZnO nanoparticles. J. Asian Ceram. Soc. 5(4), 391–396 (2017)Google Scholar
  7. 7.
    N. Aggarwal, K. Kaur, A. Vasishth, N.K. Verma, Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 27(12), 13006–13011 (2016)Google Scholar
  8. 8.
    K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, L. El, Mir, Superlattices and microstructures magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattices Microstruct. 60, 139–147 (2013)Google Scholar
  9. 9.
    N. Srinatha, B. Angadi, K.G.M. Nair, N.G. Deshpande, Y.C. Shao, W. Pong, Journal of electron spectroscopy and spectroscopic investigation of an intrinsic room temperature ferromagnetism in Co doped ZnO nanoparticles. J. Electron Spectros. Relat. Phenomena 195, 179–184 (2014)Google Scholar
  10. 10.
    C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles. Solid State Commun. 138, 511–515 (2006)Google Scholar
  11. 11.
    G.S. Lotey, J. Singh, N.K. Verma, Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles. J. Mater. Sci. Mater. Electron. 24(9), 3611–3616 (2013)Google Scholar
  12. 12.
    S. Bai, X. Liu, D. Li, S. Chen, R. Luo, A. Chen, Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuators, B 153(2), 110–116 (2011)Google Scholar
  13. 13.
    N. Aggarwal, A. Vasishth, K. Kaur, N.K. Verma, Role of dysprosium doping on structural, optical, magnetic and electrical properties of ZnO nanorods, J. Supercond. Novel Magn., 1–7 (2018)Google Scholar
  14. 14.
    J. Singh, A. Vasishth, N.K. Verma, Multiferroic properties of Zn1 − x Mg x O nanoparticles. J. Supercond. Novel Magn. 28(10), 3069–3074 (2015)Google Scholar
  15. 15.
    R. Yousefi, J. Beheshtian, S.M. Seyed-Talebi, H.R. Azimi, F. Jamali-Sheini, Experimental and theoretical study of enhanced photocatalytic activity of Mg-doped ZnO NPs and ZnO/rGO nanocomposites. Chem. Asian J. 13(2), 194-203 (2018)Google Scholar
  16. 16.
    A. Khataee, R.D.C. Soltani, A. Karimi, S.W. Joo, Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrason. Sonochem. 23, 219–230 (2015)Google Scholar
  17. 17.
    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys Rev 56(10), 978 (1939)Google Scholar
  18. 18.
    R. Iordanova, R. Gegova, A. Bachvarova-Nedelcheva, Y. Dimitriev, Sol–gel synthesis of composites in the ternary TiO2–TeO2–B2O3 system. Phys. Chem. Glasses-Eur. J. Glass Sci. Technol. Part B 56(4), 128–138 (2015)Google Scholar
  19. 19.
    R. Elilarassi, G. Chandrasekaran, Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method. J. Mater. Sci. Mater. Electron. 24(1), 96–105 (2013)Google Scholar
  20. 20.
    C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. J. Cryst. Growth 292(1), 19–25 (2006)Google Scholar
  21. 21.
    A. Hastir, N. Kohli, R.C. Singh, Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J. Phys. Chem. Solids 105, (2017)Google Scholar
  22. 22.
    K. Bandopadhyay, J. Mitra, Zn interstitials and O vacancies responsible for n-type ZnO: what do the emission spectra reveal’. RSC Adv. 5(30), 23540–23547 (2015)Google Scholar
  23. 23.
    K. Kaur, G.S. Lotey, N.K. Verma, Structural, optical and magnetic properties of cobalt-doped CdS dilute magnetic semiconducting nanorods. Mater. Chem. Phys. 12880, 6–11 (2013)Google Scholar
  24. 24.
    S. Ramu, R.P. Vijayalakshmi, Effect of terbium doping on the structural and magnetic properties of ZnS nanoparticles. J. Supercond. Nov. Magn. 30(7), 1921–1925 (2017)Google Scholar
  25. 25.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4(2), 173–179 (2005)Google Scholar
  26. 26.
    D.R. Kumar, K.S. Ranjith, L.R. Nivedita, R.T.R. Kumar, Effect of samarium doping on structural, optical and magnetic properties of vertically aligned ZnO nanorod arrays. J. Rare Earths 35(10), 1002–1007 (2017)Google Scholar
  27. 27.
    H.M. Zhou, D.Q. Yi, Z.M. Yu, L.R. Xiao, J. Li, Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties. Thin Solid Films 515(17), 6909–6914 (2007)Google Scholar
  28. 28.
    R. Ghosh, D. Basak, S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689–2692 (2004)Google Scholar
  29. 29.
    N.K. Divya, P.U. Aparna, P.P. Pradyumnan, Dielectric Properties of Er 3 + Doped ZnO Nanocrystals. Adv. Mater. Phys. Chem. 5(8):287 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nupur Aggarwal
    • 1
    Email author
  • Ajay Vasishth
    • 1
  • Kamaldeep Kaur
    • 2
  • N. K. Verma
    • 2
  1. 1.Department of PhysicsChandigarh UniversityGharuanIndia
  2. 2.School of Physics and Materials ScienceThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations