Influence on loading terbium manganate on optical, thermal and electrical properties of polyvinyl alcohol nanocomposite films

  • Monalisa Halder
  • Ajit Kumar MeikapEmail author


In this article, optical, thermal and electrical properties of different wt% of TbMnO3 (TMO) nanoparticles (NPs) loaded poly(vinyl alcohol) (PVA) films are reported in detail. The films are structurally characterised by X-ray diffraction spectroscopy and field emission scanning electron microscopy (FESEM). Optical parameters such as optical band gap energy \(\left( {{E_g}} \right)\), Urbach energy \(\left( {{E_U}} \right)\) are calculated. Red shift in the absorption band of the nanocomposite films indicates the complex formation between the nanofiller and the matrix. Thermal strength increases in TMO-PVA films than the pure PVA film. A reduction in the glass transition temperature \(\left( {{T_G}} \right)\) of the nanocomposite films is noticed with the insertion of TMO NPs in the PVA matrix. DC conductivity of the samples is explained by Mott’s variable range hopping model, Greave’s model, small polaron hopping model, non-adiabatic hopping model to explain the conduction mechanism. Modified Cole–Cole model explains the frequency variation of dielectric spectra. The relaxation peak position shifts towards lower frequency region with the inclusion of TMO filler in the PVA matrix indicating the decrease in mobility of the dipolar functional groups in the polymer chain. Modified Kohlrausch–Williams–Watts model is applied to explain the frequency dependent electric modulus spectra. AC conductivity of the films is explained by Jonscher’s power law. Correlated barrier hopping model is applied here. The presence of large current of the films at zero voltage may be due to the presence of ferroelectricity in the nanocomposite systems. Oxygen related defect states exist in the polymeric system which exhibit trapping of the charge carriers.



The authors acknowledge DST-SERB (Grant No. EMR/2016/001409), DST-INSPIRE, Govt. of India, for financial support during this work.


  1. 1.
    I. Saini, A. Sharma, R. Dhiman, S. Aggarwal, S. Ram, P.K. Sharma, J. Alloys Compd. 714, 172 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Prabhakaran, J. Hemalatha, J. Polym. Sci. B Polym. Phys. 46, 2418 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Halder, A.K. Das, A.K. Meikap, Mater. Res. Bull. 104, 179 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Rana, B.M. Mandal, S.N. Bhattacharyya, Polymer 37, 2439 (1996)CrossRefGoogle Scholar
  5. 5.
    H. Wang, P. Fang, Z. Chen, S. Wang, Appl. Surf. Sci. 253, 8495 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Mallakpour, M. Dinari, J. Reinf. Plast. Compos. 32, 217 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Krishnamoorthy, J. Nanostruct. Polym. Nanocomp. 5, 83 (2012)Google Scholar
  8. 8.
    R. Singh, S.G. Kulkarni, S.S. Channe, Polym. Bull. 70, 1251 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Mallakpour, N. Jarang, J. Plast. Film Sheet. 32, 293 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Kharazmi, E. Saion, N. Faraji, N. Soltani, A. Dehzangi, Chin. Phys. Lett. 30, 57803 (2013)CrossRefGoogle Scholar
  11. 11.
    K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Wohlrab, H. Du, M. Weiss, S. Kaskel, J. Exp. Nanosci. 3, 1 (2008)CrossRefGoogle Scholar
  13. 13.
    J.S. Hwang, J.Y. Cho, S.Y. Park, Y.J. Yoo, P.S. Yoo, B.W. Lee, Y.P. Lee, Appl. Phys. Lett. 106, 1 (2015)Google Scholar
  14. 14.
    C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 28, 2586 (2017)Google Scholar
  15. 15.
    M. Alnassar, A. Alfadhel, Yu.P. Ivanov, J. Kosel, J. Appl. Phys. 117, 1 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Behera, R.N.P. Choudhary, J. Alloys Compd. 727, 851 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Hatel, M. Goumri, B. Ratier, M. Baitoul, Mater. Chem. Phys. 193, 156 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Amiri, M. Mohsennia, J. Mater. Sci. - Mater. Electron. 28, 4586 (2017)CrossRefGoogle Scholar
  19. 19.
    R.D. Kumar, R. Thangappan, R. Jayavel, Optik 138, 365 (2017)CrossRefGoogle Scholar
  20. 20.
    C. Zhang, H. Yan, X. Wan, D. Kang, L. Li, X. Lu, J. Zhu, Mater. Lett. 111, 147 (2013)CrossRefGoogle Scholar
  21. 21.
    V.M. Gaikwad, S.M. Khule, S.A. Acharya, Int. J. Knowl. Eng. 3, 55 (2012)Google Scholar
  22. 22.
    J.A.L. López, J.C. López, D.E.V. Valerdi, G.G. Salgado, T.D. Becerril, A.P. Pedraza, F.J.F. Gracia, Nanosc. Res. Lett. 7, 604 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Elahi, M. Irfan, A. Shakoor, N.A. Niaz, K. Mahmood, M. Qasim, J. Alloys Compd. 651, 328 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Halder, A.K. Das, A.K. Meikap AIP Conference Proceedings 1832 110035 (2017)Google Scholar
  25. 25.
    A.S. Das, M. Roy, D. Roy, S. Bhattacharya, Int. J. Lat. Technol. Eng. Manage. Appl. Sci. 6, 11 (2017)Google Scholar
  26. 26.
    N.F. Mott, Philos. Mag. 19, 835 (1969)CrossRefGoogle Scholar
  27. 27.
    A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C 2, 5885 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Appl. Phys. 113, 093703 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Lago, P.D. Battle, M.J. Rosseinsky, A.I. Coldea, J. Singleton, J. Phys.: Condens. Matter. 15, 6817 (2003)Google Scholar
  30. 30.
    R. Sinha, S. Kundu, S. Basu, A.K. Meikap, Solid State Sci. 60, 75 (2016)CrossRefGoogle Scholar
  31. 31.
    P.S. Mukherjee, A.K. Das, B. Dutta, A.K. Meikap, J. Phys. Chem. Solids 111, 266 (2017)CrossRefGoogle Scholar
  32. 32.
    E. Quenneville, M. Meunier, A. Yelon, J. Appl. Phys. 90, 1891 (2001)CrossRefGoogle Scholar
  33. 33.
    M.H. Khan, S. Pal, Phys. Lett. A 379, 401 (2015)CrossRefGoogle Scholar
  34. 34.
    T. Holstein, Studies of polaron motion: Part II. Ann. Phys. 8, 343 (1959)CrossRefGoogle Scholar
  35. 35.
    D. Ming, J.M. Reau, J. Ravez, J. Gitae, P.J. Hagenmuler, J. Solid State Chem. 116, 185 (1995)CrossRefGoogle Scholar
  36. 36.
    Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, O. Bidault, M. Maglione, J. Appl. Phys. 100, 114111 (2006)CrossRefGoogle Scholar
  37. 37.
    P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)Google Scholar
  38. 38.
    S.A. Yeriskin, M. Balbasi, A. Tataroglu, J. Appl. Polym. Sci. 133, 43827 (2016)Google Scholar
  39. 39.
    A.R. Long, Adv. Phys. 31, 553 (1982)CrossRefGoogle Scholar
  40. 40.
    P. Extance, S.R. Elliot, E.A. Davis, Phys. Rev. B 32, 8148 (1985)CrossRefGoogle Scholar
  41. 41.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  42. 42.
    K. Jung, Y. Kim, H. Im, J. Korean Phys. Soc. 59, 2778 (2011)CrossRefGoogle Scholar
  43. 43.
    R.P. Ummer, B. Raneesh, C. Thevenot, D. Rouxel, S. Thomas, N. Kalarikkal, RSC Adv. 6, 28069 (2016)CrossRefGoogle Scholar
  44. 44.
    A.G. El-Shamy, W. Attia, K.M. Abd El-Kader, J. Alloys Compd. 590, 309 (2014)CrossRefGoogle Scholar
  45. 45.
    E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M. Morsi, J. Mater. Res. Tech. 293, 13 (2017)Google Scholar
  46. 46.
    T.A. Kareem, A.A. Kaliani, Arab. J. Chem. 4, 325 (2011)CrossRefGoogle Scholar
  47. 47.
    Z. Peng, L.X. Kong, S.D. Li, J. Appl. Polym. Sci. 96, 1436 (2003)CrossRefGoogle Scholar
  48. 48.
    K. Gaska, X. Xu, S. Gubanski, R. Kádár, Polymers 9, 11 (2017)CrossRefGoogle Scholar
  49. 49.
    C.U. Devi, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 56, 167 (2002)CrossRefGoogle Scholar
  50. 50.
    O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, J. Mater. Sci. - Mater. Electron. 27, 3591 (2016)CrossRefGoogle Scholar
  51. 51.
    R.V. Bernal, G.H. Pérez, M.E.C. Olalde, M.T. Torres, J. Elect. Comput. Eng. 2013, 1 (2013)CrossRefGoogle Scholar
  52. 52.
    M. Abdallh, E. Bakir, E. Yousif, J. Saudi Chem. Soc. 18, 387 (2014)CrossRefGoogle Scholar
  53. 53.
    S. Singha, M.J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 15, 12 (2008)CrossRefGoogle Scholar
  54. 54.
    S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Phys. D: Appl. Phys. 47, 275301 (2014)CrossRefGoogle Scholar
  55. 55.
    Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004)CrossRefGoogle Scholar
  56. 56.
    G. Tsagaropoulos, A. Eisenberg Macromolecules 28, 6067 (1995)CrossRefGoogle Scholar
  57. 57.
    P. Thomas, K. Dwarakanath, P. Sampathkumaran, S. Seetharamu and Kishore Proc. 2005 Int. Symp. Electr. Insul. Mater. 26, 612 (2005)Google Scholar
  58. 58.
    S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Mater. Sci. 50, 1632 (2015)CrossRefGoogle Scholar
  59. 59.
    A.K. Das, S. Sinha, A. Mukherjee, A.K. Meikap, Mater. Chem. Phys. 167, 286 (2015)CrossRefGoogle Scholar
  60. 60.
    S. He, G. Liu, Y. Zhu, X. Ma, J. Sun, S. Kang, S. Yan, Y. Chen, L. Mei, J. Jiao, RSC Adv. 7, 22715 (2017)CrossRefGoogle Scholar
  61. 61.
    A.K. Das, A.K. Meikap, Indian J. Phys. 92, 685 (2018)CrossRefGoogle Scholar
  62. 62.
    G. Wang, C. Li, Y. Chen, Y. Xia, D. Wu, Q. Xu, Sci. Rep. 6, 36953 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyDurgapurIndia

Personalised recommendations