Advertisement

Unique interfacial reaction and so-induced change in mechanical performance of Sn–3.0Ag–0.5Cu/Cu solder joints formed during undercooled and eutectic liquid soldering processes

  • M. B. Zhou
  • X. F. Zhao
  • W. Yue
  • X. P. ZhangEmail author
Article
  • 56 Downloads

Abstract

A novel technique is proposed to prepare Sn–3.0Ag–0.5Cu/Cu joints at three different processing temperatures, which are called undercooled liquid (UL, 213.0 °C), eutectic liquid (EL, 217.0 °C) and normal liquid (NL, 231.0 °C) soldering temperatures correspondingly, and each of them is lower than, equal to and higher than Sn–3.0Ag–0.5Cu solder’s melting point (217.0 °C), respectively. The interfacial reaction, intermetallic compound growth and mechanical performance of Sn–3.0Ag–0.5Cu/Cu joints formed during UL, EL and NL soldering processes were investigated systematically. Results show that for Sn–3.0Ag–0.5Cu solder as the undercooled liquid melt or eutectic liquid melt or normal liquid melt in the formation of joints, the thickness of interfacial intermetallic compound (IMC) layer in the joints increases with prolonging dwelling time. For three different liquid soldering processes, the change tendency of the interfacial IMC layer thickness is distinct. For joints formed at UL and EL temperatures, the excessive growth of primary Cu6Sn5 and interfacial IMC (mainly Cu6Sn5) can be suppressed during isothermally dwelling in the liquid state for more than 5 min. Ball shear test results show that solder joints formed at UL and EL temperatures have lower value of the maximum shear force (MSF) than those formed during the NL soldering process. For UL and EL types of joints, the fracture occurs either by shear slide fracture totally along the shear tool tip movement plane (i.e., in-plane shear slide fracture) or by shear slide fracture initially along the shear tool tip movement plane and afterwards shear deformation fracture in the solder matrix under the plane (i.e., out-of-plane shear slide and deformation mixed-mode fracture), while the fracture takes place in NL joints only by in-plane shear slide fracture mode.

Notes

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant Nos. 51405162, 51565024 and 51775195, the Science and Technology Planning Project of Guangdong Province under Grant No. 2016A010103010 and Fundamental Research Fund for the Central Universities (SCUT-2017ZD038).

References

  1. 1.
    N. Chawla, Inter. Mater. Rev. 54, 368 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Bergman, K.N. Subramanian, J. Mater. Sci. Mater. Electron. 23, 1442 (2012)CrossRefGoogle Scholar
  3. 3.
    H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)CrossRefGoogle Scholar
  4. 4.
    D. Fread, D. Grivas, J.W. Morris, J. Electron. Mater. 16, 181 (1987)CrossRefGoogle Scholar
  5. 5.
    K.S. Kim, S.H. Huh, K. Suganuma, J. Alloy Compd. 352, 226 (2003)CrossRefGoogle Scholar
  6. 6.
    Y.H. Tian, W. Liu, R. An, W. Zhang, L.N. Niu, C.Q. Wang, J. Mater Sci. Mater. Electron. 23, 136 (2012)CrossRefGoogle Scholar
  7. 7.
    Z.Q. Li, S.A. Belyakov, J.W. Xian, C.M. Gourlay, J. Electron. Mater. 47, 84 (2018)CrossRefGoogle Scholar
  8. 8.
    H.L.J. Pang, K.H. Tan, X.Q. Shi, Z.P. Wang, Mater. Sci. Eng. A 307, 42 (2001)CrossRefGoogle Scholar
  9. 9.
    H.T. Lee, M.H. Chen, H.M. Jao, T.L. Liao, Mater. Sci. Eng. A 529, 468 (2003)Google Scholar
  10. 10.
    F.X. Che, J.H.L. Pang, J. Alloy. Compd. 541, 6 (2012)CrossRefGoogle Scholar
  11. 11.
    W.H. Chen, C.F. Yu, H.C. Cheng, Y.M. Tsai, S.T. Lu, Microelectron. Reliab. 53, 30 (2013)CrossRefGoogle Scholar
  12. 12.
    T. An, F. Qin, J. Electron. Packaging. 138, 011002 (2016)CrossRefGoogle Scholar
  13. 13.
    R.Y. Tian, C.J. Hang, Y.H. Tian, L.Y. Zhao, Mater. Sci. Eng. A 709, 125 (2018)CrossRefGoogle Scholar
  14. 14.
    M.L. Huang, F. Yang, Sci. Rep. 4, 7117 (2014)CrossRefGoogle Scholar
  15. 15.
    H.R. Ma, A. Kunwar, R. Huang, J. Chen, Y.P. Wang, N. Zhao, H.T. Ma, Intermetallics 90, 90 (2017)CrossRefGoogle Scholar
  16. 16.
    J.Q. Huang, M.B. Zhou, X.P. Zhang, J. Mater Sci. Mater. Electron. 23, 136 (2018)Google Scholar
  17. 17.
    Y.H. Tian, C.J. Hang, C.Q. Wang, S.H. Yang, P.R. Lin, Mater. Sci. Eng. A 529, 468 (2011)CrossRefGoogle Scholar
  18. 18.
    H.K. Kim, K.N. Tu, Appl. Phys. Lett. 67, 20021 (1995)Google Scholar
  19. 19.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1–60 (2005)CrossRefGoogle Scholar
  20. 20.
    D.Q. Yu, L. Wang, J. Alloy. Compd. 458, 542 (2008)CrossRefGoogle Scholar
  21. 21.
    G.T. Lim, B.J. Kim, K. Lee, J. Kim, Y.C. Joo, Y.B. Park, J. Electron. Mater. 38, 2228 (2009)CrossRefGoogle Scholar
  22. 22.
    O.Y. Liashenko, F. Hodaj, Acta Mater. 99, 106 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Kinyanjui, L.P. Lehman, L. Zavalij, E. Cotts, J. Mater. Res. 20, 2914 (2005)CrossRefGoogle Scholar
  24. 24.
    Y.C. Huang, S.W. Chen, K.S. Wu, J. Electron. Mater. 39, 109 (2010)CrossRefGoogle Scholar
  25. 25.
    M.B. Zhou, X. Ma, X.P. Zhang, J. Electron. Mater. 41, 3169 (2012)CrossRefGoogle Scholar
  26. 26.
    T.L. Yang, J.Y. Wu, C.C. Li, S. Yang, C.R. Kao, J. Alloy. Compd. 647, 681 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.Y. Zhao, C. Chen, C.Y. Park, Y.M. Wang, L. Liu, G.S. Zou, J. Cai, Q. Wang, Mater. Trans. 56, 1037 (2015)CrossRefGoogle Scholar
  28. 28.
    F.J. Wang, H. Chen, Y. Huang, L.T. Liu, Z.J. Zhang, J. Mater. Sci. Mater. Electron.  https://doi.org/10.1007/s10854-019-00701-w
  29. 29.
    M. Faizan, Mater. Manuf. Process 30, 169 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Shen, Y.C. Liu, H.X. Gao, J. Mater. Sci. 42, 5375 (2007)CrossRefGoogle Scholar
  31. 31.
    C.M. Gourlay, S.A. Belyakov, Z.L. Ma, JOM 67, 2383 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Guangdong Provincial Engineering Technology R&D Center of Electronic Packaging Materials and ReliabilitySouth China University of TechnologyGuangzhouChina
  3. 3.School of Materials EngineeringLanzhou Institute of TechnologyLanzhouChina

Personalised recommendations