Advertisement

Incoherent charge transport induced by irradiation of YBCO single crystals with MeV electrons

  • R. V. Vovk
  • G. Ya Khadzhai
  • O. V. DobrovolskiyEmail author
Article
  • 11 Downloads

Abstract

Irradiation with electrons is an efficient approach to induce a large number of defects with minimal impact on the material composition. In high-temperature superconducting cuprates, electrons with MeV energies produce point defects in the form of interstitial ions and vacancies that act as efficient scattering centers. Here, we analyze the changes in the electronic transport along the c-axis of \(\hbox {YBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\) single crystals after their irradiation with \(0.5-2.5\) MeV electrons at \(T \lesssim 10\) K and a dose of \(10^{18}\) cm\(^{-2}\). While a variable-range hopping conductivity associated with some mesoscopic length scale is observed in the non-irradiated samples, we reveal a two-step superconducting transition in the irradiated samples, that attests to the presence of an additional, macroscopic inhomogeneity induced by the electron irradiation.

Notes

Acknowledgements

This work was supported by the European Commission in the framework of the program Marie Sklodowska-Curie Actions—Research and Innovation Staff Exchange (MSCA-RISE) under Grant Agreement No. 644348 (MagIC).

References

  1. 1.
    D.M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors I (Word Scientific, Singapore, 1989)Google Scholar
  2. 2.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, A. Chroneos, Physica C 516, 58–61 (2015).  https://doi.org/10.1016/j.physc.2015.06.011 CrossRefGoogle Scholar
  3. 3.
    H. Matsui, H. Ogiso, H. Yamasaki, T. Kumagai, M. Sohma, I. Yamaguchi, T. Manabe, Appl. Phys. Lett. 101, 232601 (2012).  https://doi.org/10.1063/1.4769836 CrossRefGoogle Scholar
  4. 4.
    O.V. Dobrovolskiy, Physica C 533, 80–90 (2017).  https://doi.org/10.1016/j.physc.2016.07.008 CrossRefGoogle Scholar
  5. 5.
    W. Lang, J.D. Pedaring, Ion Irradiation of High-Temperature Superconductors and Its Application for Nanopatternin, Chap 3 (Springer, Heidelberg, 2010), pp. 81–104Google Scholar
  6. 6.
    P.W. Anderson, Z. Zou, Phys. Rev. Lett. 60, 132–135 (1988).  https://doi.org/10.1103/PhysRevLett.60.132 CrossRefGoogle Scholar
  7. 7.
    M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, T. Pruschke, V.I. Anisimov, Phys. Rev. B 72, 155105 (2005).  https://doi.org/10.1103/PhysRevB.72.155105 CrossRefGoogle Scholar
  8. 8.
    A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, S.N. Kamchatnaya, D.M. Sergeev, Curr. Appl. Phys. 16, 931–938 (2016).  https://doi.org/10.1016/j.cap.2016.05.014 CrossRefGoogle Scholar
  9. 9.
    T.A. Friedmann, J.P. Rice, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 39, 4258–4266 (1989).  https://doi.org/10.1103/PhysRevB.39.4258 CrossRefGoogle Scholar
  10. 10.
    D.A. Bonn, Nat. Phys. 2, 159 (2006).  https://doi.org/10.1038/nphys248 CrossRefGoogle Scholar
  11. 11.
    J. Ashkenazi, J. Supercond. Nov. Magn. 24, 1281–1308 (2011).  https://doi.org/10.1007/s10948-010-0823-8 CrossRefGoogle Scholar
  12. 12.
    W.H. Fietz, R. Quenzel, K. Grube, J. Metzger, T. Weber, H.A. Ludwig, Physica C 235, 1785–1786 (1994).  https://doi.org/10.1016/0921-4534(94)92114-8 CrossRefGoogle Scholar
  13. 13.
    G.Y. Khadzhai, R.V. Vovk, N.R. Vovk, S.N. Kamchatnaya, O.V. Dobrovolskiy, Physica C 545, 14–17 (2018).  https://doi.org/10.1016/j.physc.2017.11.015 CrossRefGoogle Scholar
  14. 14.
    A.V. Bondarenko, V.A. Shklovskij, M.A. Obolenskii, R.V. Vovk, A.A. Prodan, M. Pissas, D. Niarchos, G. Kallias, Phys. Rev. B 58, 2445–2447 (1998).  https://doi.org/10.1103/PhysRevB.58.2445 CrossRefGoogle Scholar
  15. 15.
    N.A. Azarenkov, V.N. Voevodin, R.V. Vovk, G.Y. Khadzhai, S.V. Lebedev, V.V. Sklyar, S.N. Kamchatnaya, O.V. Dobrovolskiy, J. Mater. Sci.: Mater. Electron. 28, 15886–15890 (2017).  https://doi.org/10.1007/s10854-017-7483-4 Google Scholar
  16. 16.
    N.A. Azarenkov, V.N. Voevodin, R.V. Vovk, G.Y. Khadzhai, Low Temp. Phys. 44, 860–862 (2018).  https://doi.org/10.1063/1.5049172 CrossRefGoogle Scholar
  17. 17.
    W.J. Weber, R.C. Ewing, C.R.A. Catlow, T.D. de la Rubia, L.W. Hobbs, C. Kinoshita, H. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, J. Mater. Res. 13, 1434–1484 (1998).  https://doi.org/10.1557/JMR.1998.0205 CrossRefGoogle Scholar
  18. 18.
    O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij, Appl. Phys. Lett. 107, 162603-1–5 (2015).  https://doi.org/10.1063/1.4934487 CrossRefGoogle Scholar
  19. 19.
    O.V. Dobrovolskiy, M. Huth, V. Shklovskij, R.V. Vovk, Sci. Rep. 7, 13740 (2017).  https://doi.org/10.1038/s41598-017-14232-z CrossRefGoogle Scholar
  20. 20.
    Y. Ando, S. Komiya, K. Segawa, S. Ono, Y. Kurita, Phys. Rev. Lett. 93, 267001 (2004).  https://doi.org/10.1103/PhysRevLett.93.267001 CrossRefGoogle Scholar
  21. 21.
    S.I. Bondarenko, V.P. Koverya, A.V. Krevsun, S.I. Link, Low Temp. Phys. 43, 1125–1151 (2017).  https://doi.org/10.1063/1.5008405 CrossRefGoogle Scholar
  22. 22.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, J. Mater. Sci.: Mater. Electron. 30, 241–245 (2018).  https://doi.org/10.1007/s10854-018-0286-4 Google Scholar
  23. 23.
    B. Martínez, F. Sandiumenge, S. Pinol, N. Vilalta, J. Fontcuberta, X. Obradors, Appl. Phys. Lett. 66, 772–774 (1995)CrossRefGoogle Scholar
  24. 24.
    R. Vovk, G. Khadzhai, O. Dobrovolskiy, N. Vovk, Z. Nazyrov, J. Mater. Sci: Mater. Electron. 26, 1435–1440 (2015).  https://doi.org/10.1007/s10854-014-2558-y Google Scholar
  25. 25.
    M. Akhavan, Physica B 321, 265–282 (2002).  https://doi.org/10.1016/S0921-4526(02)00860-8 CrossRefGoogle Scholar
  26. 26.
    M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev, Low Temp. Phys. 32, 571–575 (2006).  https://doi.org/10.1063/1.2215373 CrossRefGoogle Scholar
  27. 27.
    J. Giapintzakis, W.C. Lee, J.P. Rice, D.M. Ginsberg, I.M. Robertson, R. Wheeler, M.A. Kirk, M.-O. Ruault, Phys. Rev. B 45, 10677–10683 (1992). https://link.aps.org/doi/10.1103/PhysRevB.45.10677 CrossRefGoogle Scholar
  28. 28.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, I.L. Goulatis, Mater. Res. Expr. 1, 026303 (2014).  https://doi.org/10.1088/2053-1591/1/2/026303 CrossRefGoogle Scholar
  29. 29.
    P. Sheng, J. Klafter, Phys. Rev. B 27, 2583–2586 (1983).  https://doi.org/10.1103/PhysRevB.27.2583 CrossRefGoogle Scholar
  30. 30.
    M.A. Ivanov, V.M. Loktev, Low Temp. Phys. 25, 996–998 (1999).  https://doi.org/10.1063/1.593854 CrossRefGoogle Scholar
  31. 31.
    E.Z. Meilikhov, J. Exp. Theor. Phys. 88, 819–825 (1999).  https://doi.org/10.1134/1.558861 CrossRefGoogle Scholar
  32. 32.
    R.M. Costa, F.T. Dias, P. Pureur, X. Obradors, Physica C 495, 202–207 (2013).  https://doi.org/10.1016/j.physc.2013.09.015 CrossRefGoogle Scholar
  33. 33.
    U. Divakar, G. Bhalla, R. Kumar, Nucl. Instr. Methods 171, 309–313 (2000).  https://doi.org/10.1016/S0168-583X(00)00269-X CrossRefGoogle Scholar
  34. 34.
    R.V. Vovk, Y.I. Boiko, V.V. Bogdanov, S.N. Kamchatnaya, I.L. Goulatis, A. Chroneos, Physica C 536, 26–29 (2017).  https://doi.org/10.1016/j.physc.2017.04.001 CrossRefGoogle Scholar
  35. 35.
    V.M. Apalkov, M.E. Portnoi, Phys. Rev. B 65, 125310 (2002).  https://doi.org/10.1103/PhysRevB.65.125310 CrossRefGoogle Scholar
  36. 36.
    I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20, 498–504 (1994)Google Scholar
  37. 37.
    P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011).  https://doi.org/10.1103/PhysRevB.84.104507 CrossRefGoogle Scholar
  38. 38.
    C.A. Downing, M.E. Portnoi, Nat. Commun. 8, 897 (2017).  https://doi.org/10.1038/s41467-017-00949-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. V. Vovk
    • 1
  • G. Ya Khadzhai
    • 1
  • O. V. Dobrovolskiy
    • 1
    • 2
    Email author
  1. 1.V. Karazin Kharkiv National UniversityKharkivUkraine
  2. 2.Physikalisches Institut Goethe UniversityFrankfurt am MainGermany

Personalised recommendations