Modulation of resistive switching in Pt/LiCoO2/SiO2/Si stacks

  • Qi Hu
  • Anping HuangEmail author
  • Xinjiang Zhang
  • Runmiao Li
  • Qin Gao
  • Meng Wang
  • Mei Wang
  • Hongliang Shi
  • Zhisong Xiao
  • Paul K. Chu


Pt/LiCoO2/SiO2/Si stacks are fabricated by pulsed laser deposition and annealed at different annealing temperature. Pt/LiCoO2/SiO2/Si stacks exhibit lower current and higher high resistance state/low resistance state ratio than other stacks with homogeneous resistive switching. It is found that resistive switching behavior of Pt/LiCoO2/SiO2/Si stacks can be modulated by LiCoO2 crystal structures. The Pt/LiCoO2/SiO2/Si stacks with R-3m LiCoO2 phase show larger maximum currents and better state stability than samples with amorphous LiCoO2, and samples with amorphous or R-3m LiCoO2 phase exhibit non-homogeneous or homogeneous resistive switching, respectively. The reasons for the different resistive switching behaviors are investigated and discussed. These findings provide insights into how to improve the performance of Pt/LiCoO2/SiO2/Si stacks and a further understanding of the homogeneous resistive switching behavior.



The work was jointly financially supported by the National Natural Science Foundation of China (Grant Nos. 51872010, 11574017, 11574021 and 11604007), Special Foundation of Beijing Municipal Science & Technology Commission (Grant No. Z161100000216149), and City University of Hong Kong Strategic Research Grant (SRG) No. 7004644.


  1. 1.
    G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L.L. Sanches, I. Boybat, M.L. Gallo, K. Moon, J. Woo, H. Hwang, Y. Leblebici, Adv. Phys. X 2, 89 (2017)Google Scholar
  2. 2.
    J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu, Z.U. Rehman, L. Bao, X. Zhang, Y. Cai, L. Song, R. Huang, Adv. Mater. 30, 1800195 (2018)CrossRefGoogle Scholar
  3. 3.
    X. Zhang, A. Huang, Q. Hu, Z. Xiao, P.K. Chu, Phys. Status Solidi A 215, 1700875 (2018)CrossRefGoogle Scholar
  4. 4.
    E.J. Fuller, F.E. Gabaly, F. Léonard, S. Agarwal, S.J. Plimpton, R.B. Jacobs-Gedrim, C.D. James, M.J. Marinella, A.A. Talin, Adv. Mater. 29, 1604310 (2017)CrossRefGoogle Scholar
  5. 5.
    J.D. Greenlee, C.F. Petersburg, W.G. Daly, F.M. Alamgir, W.A. Doolittle, Appl. Phys. Lett. 102, 213502 (2013)CrossRefGoogle Scholar
  6. 6.
    X. Zhu, C.S. Ong, X. Xu, B. Hu, J. Shang, H. Yang, S. Katlakunta, Y. Liu, X. Chen, L. Pan, J. Ding, R.W. Li, Sci. Rep. 3, 1084 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Moradpour, O. Schneegans, S. Franger, A. Revcolevschi, R. Salot, P. Auban-Senzier, C. Pasquier, E. Svoukis, J. Giapintzakis, O. Dragos, V.C. Ciomaga, P. Chrétien, Adv. Mater. 23, 4141 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Zhu, J. Zhou, L. Chen, S. Guo, G. Liu, R.W. Li, W.D. Lu, Adv. Mater. 28, 7658 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Wang, W. Wang, C. Yakopcic, E. Shin, G. Subramanyam, T.M. Taha, Microelectron. Eng. 168, 37 (2017)CrossRefGoogle Scholar
  10. 10.
    J.D. Greenlee, J.C. Shank, M.B. Tellekamp, E.X. Zhang, J. Bi, D.M. Fleetwood, M.L. Alles, R.D. Schrimpf, W.A. Doolittle, IEEE Trans. Nucl. Sci. 60, 4555 (2013)CrossRefGoogle Scholar
  11. 11.
    J.D. Greenlee, C.F. Petersburg, W.L. Calley, C. Jaye, D.A. Fischer, F.M. Alamgir, W.A. Doolittle, Appl. Phys. Lett. 100, 182106 (2012)CrossRefGoogle Scholar
  12. 12.
    E. Svoukis, C.N. Mihailescu, V.H. Mai, O. Schneegans, K. Breza, C. Lioutas, Appl. Surf. Sci. 381, 22 (2016)CrossRefGoogle Scholar
  13. 13.
    V.S. Nguyen, V.H. Mai, P.A. Senzier, C. Pasquier, K. Wang, M.J. Rozenberg, N. Brun, K. March, F. Jomard, J. Giapintzakis, C.N. Mihailescu, E. Kyriakides, P. Nukala, T. Maroutian, G. Agnus, P. Lecoeur, S. Matzen, P. Aubert, S. Franger, R. Salot, P.A. Albouy, D. Alamarguy, B. Dkhil, P. Chrétien, O. Schneegans, Small 14, 1801038 (2018)CrossRefGoogle Scholar
  14. 14.
    V.H. Mai, A. Moradpour, P.A. Senzier, C. Pasquier, K. Wang, M.J. Rozenberg, J. Giapintzakis, C.N. Mihailescu, C.M. Orfanidou, E. Svoukis, A. Breza, C.B. Lioutas, S. Franger, A. Revcolevschi, T. Maroutian, P. Lecoeur, P. Aubert, G. Agnus, R. Salot, P.A. Albouy, R. Weil, D. Alamarguy, K. March, F. Jomard, P. Chre´tien, O. Schneegans, Sci. Rep. 5, 7761 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Ménétrier, I. Saadoune, S. Levasseur, C. Delmas, J. Mater. Chem. 9, 1135 (1999)CrossRefGoogle Scholar
  16. 16.
    C.A. Marianetti, G. Kotliar, G. Ceder, Nat. Mater. 3, 627 (2004)CrossRefGoogle Scholar
  17. 17.
    X. Lu, L. Zhao, X. He, R. Xiao, L. Gu, Y.S. Hu, H. Li, Z. Wang, X. Duan, L. Chen, J. Maier, Y. Ikuhara, Adv. Mater. 24, 3233 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Antaya, J.R. Dahn, J.S. Preston, E. Rossen, J.N. Reimers, J. Electrochem. Soc. 140, 575–578 (1993)CrossRefGoogle Scholar
  19. 19.
    S. Tintignac, R. Baddour-Hadjean, J.P. Pereira-Ramos, R. Salot, Electrochim. Acta 60, 121–129 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Milewska, K. Świerczek, J. Tobola, F. Boudoire, Y. Hu, D.K. Bora, B.S. Mun, A. Braun, J. Molenda, Solid State Ionics 263, 110 (2014)CrossRefGoogle Scholar
  21. 21.
    B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson, J. Electrochem. Soc. 143, 3203 (1996)CrossRefGoogle Scholar
  22. 22.
    R.A. Huggins, Advanced batteries: materials science aspects. Springer, pp 339–373 (2009)Google Scholar
  23. 23.
    H. Abdi, Encyclopedia of research design. Sage, Thousand Oaks, pp 169–171 (2010)Google Scholar
  24. 24.
    C.H. Huang, J.S. Huang, C.C. Lai, H.W. Huang, S.J. Lin, Y.L. Chueh, ACS Appl. Mater. Interfaces 5, 6017–6023 (2013)CrossRefGoogle Scholar
  25. 25.
    K.P. Biju, X. Liu, S. Kim, S. Jung, J. Park, H. Hwang, Phys. Status Solidi (RRL) 5, 89–91 (2011)CrossRefGoogle Scholar
  26. 26.
    N. Ariel, G. Ceder, D.R. Sadoway, E.A. Fitzgerald, J. Appl. Phys. 98, 023516 (2005)CrossRefGoogle Scholar
  27. 27.
    S. Hao, C. Wolverton, J. Phys. Chem. C 117, 8009–8013 (2013)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, Y. Li, Z. Wang, K. Zhao, Nano Lett. 14, 7161–7170 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Ostadhossein, S.Y. Kim, E.D. Cubuk, Y. Qi, A.C. Van Duin, J. Phys. Chem. A 120, 2114–2127 (2016)CrossRefGoogle Scholar
  30. 30.
    G.A. Tritsaris, E. Axiras, S. Meng, E. Wang, Nano Lett. 13, 2258–2263 (2013)CrossRefGoogle Scholar
  31. 31.
    T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, Y. Iriyama, J. Power Sources 260, 292–298 (2014)CrossRefGoogle Scholar
  32. 32.
    G.A. Tritsaris, K. Zhao, O.U. Okeke, E. Kaxiras, J. Phys. Chem. C 116, 22212–22216 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Iriyama, M. Inaba, T. Abe, Z. Ogumi, J. Power Sources 94, 175–182 (2001)CrossRefGoogle Scholar
  34. 34.
    Y. Yoon, C. Park, J. Kim, D. Shin, J. Power Sources 226, 186–190 (2013)CrossRefGoogle Scholar
  35. 35.
    J.S. Hong, J.R. Selman, J. Electrochem. Soc. 147, 3183 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsBeihang UniversityBeijingChina
  2. 2.Department of Physics and Department of Materials Science and EngineeringCity University of Hong KongKowloonChina

Personalised recommendations