Advertisement

Preparation of Fe–C nanofiber composites by metal organic complex and potential application in supercapacitors

  • Guanyi Wang
  • Xingwei Sun
  • Jie Bai
  • Limin HanEmail author
Article
  • 7 Downloads

Abstract

In this paper, high-capacity supercapacitor material (Fe-Nx/CNFs) synthesized by electrospinning a metal complex in PAN/DMF solution with different temperatures was presented. Moreover, nitrogen doping (N-doping in short) has been used to tailor the properties of carbon nanofibers and rendered its potential use for capacitor as an effective way. The structural and morphological properties of the Fe-Nx/CNFs were fully characterized and the carbonation temperature of the Fe-Nx/CNFs precursor was optimized. Compared with the pure carbon nanofiber, the annealing temperature of optimized Fe-Nx/CNFs composites electrode material was 550 °C. Fabricating the binder-free iron-based electrode exhibited a higher capacitance of 629 F g−1 at the current density of 1 A g−1 in 4 mol L−1 aqueous KOH electrolyte. Meanwhile, a cycling stability of 97% capacitance retention after cycling 2500 at 5 A g−1 was maintained. This outstanding performance was attributed to the formation of the Fe-N bond and N-doped carbon nanofibers that effectively facilitates electronic transport. Therefore, carbon nanofibers, wherein nitrogen-doped metal (iron) center, exhibited high performance as supercapacitors.

Keywords

Metal organic complex Fe-C nanofiber N-doping Supercapacitors Binder-free 

References

  1. 1.
    N.-L. Wu, S.-Y. Wang, C.-Y. Han, D.-S. Wu, L.-R. Shiue, Electrochemical capacitor of magnetite in aqueous electrolytes. J. Power Sources 113, 173–178 (2003)CrossRefGoogle Scholar
  2. 2.
    J. Zhang, H. Liu, P. Shi, Y. Li, L. Huang, W. Mai, S. Tan, X. Cai, Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite. J. Power Sources 267, 356–365 (2014)CrossRefGoogle Scholar
  3. 3.
    G. Wei, K. Du, X. Zhao, C. Li, J. Li, K. Ren, Y. Huang, H. Wang, S. Yao, C. An, Integrated FeOOH nanospindles with conductive polymer layer for high-performance supercapacitors. J. Alloys Compd. 728, 631–639 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104, 4245–4270 (2004)CrossRefGoogle Scholar
  5. 5.
    A.A. Yadav, T.B. Deshmukh, R.V. Deshmukh, D.D. Patil, U.J. Chavan, Electrochemical supercapacitive performance of Hematite α-Fe2O3 thin films prepared by spray pyrolysis from non-aqueous medium. Thin Solid Films 616, 351–358 (2016)CrossRefGoogle Scholar
  6. 6.
    J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008)CrossRefGoogle Scholar
  7. 7.
    P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl 47, 2930–2946 (2008)CrossRefGoogle Scholar
  8. 8.
    E. Samuel, B. Joshi, H.S. Jo, Y.I. Kim, S. An, M.T. Swihart, J.M. Yun, K.H. Kim, S.S. Yoon, Carbon nanofibers decorated with FeOx nanoparticles as a flexible electrode material for symmetric supercapacitors. Chem. Eng. J. 328, 776–784 (2017)CrossRefGoogle Scholar
  9. 9.
    A.C. Lim, H.S. Jadhav, J.G. Seo, Electron transport shuttle mechanism via an Fe-N-C bond derived from a conjugated microporous polymer for a supercapacitor. Dalton Trans. 47, 852–858 (2018)CrossRefGoogle Scholar
  10. 10.
    E. Samuel, B. Joshi, H.S. Jo, Y.I. Kim, M.T. Swihart, J.M. Yun, K.H. Kim, S.S. Yoon, Flexible and freestanding core-shell SnOx/carbon nanofiber mats for high-performance supercapacitors. J. Alloys Compd. 728, 1362–1371 (2017)CrossRefGoogle Scholar
  11. 11.
    W. Yang, W. Yang, L. Kong, A. Song, X. Qin, G. Shao, Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition. Carbon 127, 557–567 (2018)CrossRefGoogle Scholar
  12. 12.
    K. Sun, E. Feng, H. Peng, G. Ma, Y. Wu, H. Wang, Z. Lei, A simple and high-performance supercapacitor based on nitrogen-doped porous carbon in redox-mediated sodium molybdate electrolyte. Electrochim. Acta 158, 361–367 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Pu, C. Li, L. Tang, T. Li, L. Ling, K. Zhang, Y. Xu, Q. Li, Y. Yao, Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon 94, 650–660 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Yang, W. Yang, A. Song, L. Gao, L. Su, G. Shao, Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte. J. Power Sources 359, 556–567 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Yan, Y. Yu, S.-K. Ryu, J. Lan, X. Jia, X. Yang, Simple and scalable synthesis of phosphorus and nitrogen enriched porous carbons with high volumetric capacitance. Electrochim. Acta 136, 466–472 (2014)CrossRefGoogle Scholar
  16. 16.
    L.-F. Chen, X.-D. Zhang, H.-W. Liang, M. Kong, Q.-F. Guan, P. Chen, Z.-Y. Wu, S.-H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6, 7092–7102 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang, X.W.D. Lou, Free-Standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6, 1502217 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 27, 2042–2048 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 16, 3321–3328 (2016)CrossRefGoogle Scholar
  20. 20.
    W. Li, S. Hu, X. Luo, Z. Li, X. Sun, M. Li, F. Liu, Y. Yu, Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29, 1605820 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang, X. Liu, Z. Liu, D. Zhao, S.J. Pennycook, J. Wang, Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Mater. 16, 243–250 (2019)CrossRefGoogle Scholar
  22. 22.
    W. Yang, W. Yang, L. Kong, A. Song, X. Qin, Facile synthesis of nitrogen-doped porous carbon for high-performance supercapacitors. RSC Adv. 7, 55257–55263 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Guan, D. Chao, Y. Wang, J. Wang, J. Liu, Confined Fe2O3 nanoparticles on graphite foam as high-rate and stable lithium-ion battery anode. Part. Part. Syst. Char. 33, 487–492 (2016)CrossRefGoogle Scholar
  24. 24.
    C. Guan, W. Zhao, Y. Hu, Q. Ke, X. Li, H. Zhang, J. Wang, High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes. Adv. Energy Mater 6, 1601034 (2016)CrossRefGoogle Scholar
  25. 25.
    G.H. Jeong, S. Baek, S. Lee, S.W. Kim, Metal oxide/graphene composites for supercapacitive electrode materials. Chem. Asian. J. 11, 949–964 (2016)CrossRefGoogle Scholar
  26. 26.
    A.T. Serkov, IR spectroscopic identification of chemical bonds in macromolecules of polyacrylonitrile and carbon fibres. Fibre Chem. 39, 60–63 (2007)CrossRefGoogle Scholar
  27. 27.
    L. Wang, Y. Yu, P.C. Chen, D.W. Zhang, C.H. Chen, Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 183, 717–723 (2008)CrossRefGoogle Scholar
  28. 28.
    M. Kumar, A. Subramania, K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim. Acta 149, 152–158 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Bai, Z.-H. Huang, F. Kang, Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin. Carbon 66, 705–712 (2014)CrossRefGoogle Scholar
  30. 30.
    C. Fu, A. Mahadevegowda, P.S. Grant, Fe3O4/carbon nanofibres with necklace architecture for enhanced electrochemical energy storage. J. Mater. Chem. A 3, 14245–14253 (2015)CrossRefGoogle Scholar
  31. 31.
    M.I. Loría-Bastarrachea, W. Herrera-Kao, J.V. Cauich-Rodríguez, J.M. Cervantes-Uc, H. Vázquez-Torres, A. Ávila-Ortega, A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Therm. Anal. Calorim. 104, 737–742 (2011)CrossRefGoogle Scholar
  32. 32.
    J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94, 189–195 (2015)CrossRefGoogle Scholar
  33. 33.
    Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27, 6702–6707 (2015)CrossRefGoogle Scholar
  34. 34.
    B.N. Joshi, S. An, Y.I. Kim, E.P. Samuel, K.Y. Song, I.W. Seong, S.S. Al-Deyab, M.T. Swihart, W.Y. Yoon, S.S. Yoon, Flexible freestanding Fe2O3-SnOx-carbon nanofiber composites for Li ion battery anodes. J. Alloys Compd. 700, 259–266 (2017)CrossRefGoogle Scholar
  35. 35.
    D. Wang, Z. Ma, Y.e. Xie, M. Zhang, N. Zhao, H. Song, Fe/N-doped graphene with rod-like CNTs as an air-cathode catalyst in microbial fuel cells. RSC Adv. 8, 1203–1209 (2018)CrossRefGoogle Scholar
  36. 36.
    K. Hu, Z. Xiao, Y. Cheng, D. Yan, R. Chen, J. Huo, S. Wang, Iron phosphide/N, P-doped carbon nanosheets as highly efficient electrocatalysts for oxygen reduction reaction over the whole pH range. Electrochim. Acta 254, 280–286 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Lin, Q. Zhu, A.W. Xu, Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136, 11027–11033 (2014)CrossRefGoogle Scholar
  38. 38.
    C. Guan, W. Zhao, Y. Hu, Z. Lai, X. Li, S. Sun, H. Zhang, A.K. Cheetham, J. Wang, Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horiz. 2, 99–105 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Zhu, X. Chen, J. Liu, J. Zhang, D. Xu, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, Rational design of Fe/N/S-doped nanoporous carbon catalysts from covalent triazine frameworks for efficient oxygen reduction. ChemSusChem, 11, 2402–2409 (2018)CrossRefGoogle Scholar
  40. 40.
    L. Zhou, C. Yang, J. Wen, P. Fu, Y. Zhang, J. Sun, H. Wang, Y. Yuan, Soft-template assisted synthesis of Fe/N-doped hollow carbon nanospheres as advanced electrocatalysts for the oxygen reduction reaction in microbial fuel cells. J. Mater. Chem. A 5, 19343–19350 (2017)CrossRefGoogle Scholar
  41. 41.
    J. Sun, P. Zan, X. Yang, L. Ye, L. Zhao, Room-temperature synthesis of Fe3O4 /Fe-carbon nanocomposites with Fe-carbon double conductive network as supercapacitor. Electrochim. Acta 215, 483–491 (2016)CrossRefGoogle Scholar
  42. 42.
    Y. Liu, F. Wang, L.-Z. Fan, Self-standing Na-storage anode of Fe2O3 nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability. Nano Res. 11, 4026–4037 (2018)CrossRefGoogle Scholar
  43. 43.
    C. Long, T. Wei, J. Yan, L. Jiang, Z. Fan, Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. ACS Nano. 7, 11325–11332 (2013)CrossRefGoogle Scholar
  44. 44.
    P.M. Hallam, M. Gómez-Mingot, D.K. Kampouris, C.E. Banks, Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors. RSC Adv. 2, 6672 (2012)CrossRefGoogle Scholar
  45. 45.
    R. Pai, A. Singh, S. Simotwo, V. Kalra, In situ grown iron oxides on carbon nanofibers as freestanding anodes in aqueous supercapacitors. Adv. Eng. Mater. 20, 1701116 (2018)CrossRefGoogle Scholar
  46. 46.
    Y. Li, Q. Li, L. Cao, X. Cui, Y. Yang, P. Xiao, Y. Zhang, The impact of morphologies and electrolyte solutions on the supercapacitive behavior for Fe2O3 and the charge storage mechanism. Electrochim. Acta 178, 171–178 (2015)CrossRefGoogle Scholar
  47. 47.
    Q. Ke, C. Tang, Y. Liu, H. Liu, J. Wang, Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors. Mater. Res. Express 1, 025015 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Aghazadeh, M.R. Ganjali, Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: Development of a novel iron-based electrode. Ceram. Int. 44, 520–529 (2018)CrossRefGoogle Scholar
  49. 49.
    X. Tang, R. Jia, T. Zhai, H. Xia, Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors, ACS. Appl. Mater. Interfaces 7, 27518–27525 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHohhotPeople’s Republic of China

Personalised recommendations