Advertisement

Near infrared emission and enhanced ferromagnetism in Fe doped SrSnO3 perovskite structured nanorods

  • M. MuralidharanEmail author
  • R. Thiyagarajan
  • K. Sivakumar
  • K. Sivaji
Article
  • 40 Downloads

Abstract

SrSn1−xFexO3 (x = 0, 0.01, 0.03 and 0.05) nanorods prepared by chemical precipitation method was investigated for the effect of Fe doping on structural, optical and magnetic properties. X-ray diffraction pattern of the prepared samples indicated orthorhombic structure with considerable variation in the lattice parameters, confirming the Fe incorporation in Sr–Sn–O lattice. Electron microscopy studies revealed the surface morphology changes from rods with poly-dispersed particles to well-defined rod shapes, upon Fe doping. FTIR, Raman, X-ray photoelectron and UV–Vis spectroscopy results confirmed the presence of metal oxide vibrations, active Raman modes, oxygen vacancy and strong optical absorption, respectively. Photoluminescence studies showed an interesting feature of near-infrared emission for the Fe doped samples. Magnetization measurements at room temperature demonstrated dia- to ferro- magnetic phase transition as a result of increased Fe concentration. Fe 5% doped sample significantly exhibited an increased coercivity with a maximum at 2 K. The induced ferromagnetic behavior and near infrared emission in Fe doped SrSnO3 suggest the material for magneto-electronic device applications.

Notes

Acknowledgements

Author M. Muralidharan, acknowledges the SERB (DST) National post-doctoral fellowship and support (PDF 2016/000372). Authors also thank the DST-PURSE program of University of Madras for the experimental facilities.

Supplementary material

10854_2019_756_MOESM1_ESM.docx (306 kb)
Supplementary material 1 (DOCX 305 KB)

References

  1. 1.
    G.A. Prinz, Magneto electronics. Science. 282, 1660–1663 (1998)CrossRefGoogle Scholar
  2. 2.
    S.A. Wolf, Spintronics: a spin-based electronics vision for the future. Science. 294, 1488–1494 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Stanulis, S. Sakirzanovas, M. Van Bael, A. Kareiva, Sol–gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates. J. Sol-Gel. Sci. Technol. 64, 643–652 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Ouni, S. Nouri, J. Rohlicek, R.B. Hassen, Structural and electrical properties of the sol–gel prepared Sr1–xErxSnO3–δ compounds. J. Solid State Chem. 192, 132–138 (2012)CrossRefGoogle Scholar
  5. 5.
    E.H. Mountstevens, J.P. Attfield, S.A.T. Redfern, Cation-size control of structural phase transitions in tin perovskites. J. Phys.: Condens. Matter 15, 8315–8326 (2003)Google Scholar
  6. 6.
    S. Wang, M. Lu, G. Zhou, H. Zhang, Z. Yang, Systematic investigations into SrSnO3 nanocrystals (II) photo luminescent properties of the as-synthesized nanocrystals. J. Alloys Compd. 452, 432–434 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Chen, J. Ye, SrSnO3 nanostructures: synthesis, characterization, and photocatalytic properties. Chem. Mater. 19, 4585–4591 (2007)CrossRefGoogle Scholar
  8. 8.
    H.M. Yang, J.X. Shi, M.L. Gong, A new luminescent material, Sr2SnO4:Eu3+. J. Alloys Compd. 415, 213–215 (2006)CrossRefGoogle Scholar
  9. 9.
    L. Adolfova, Z. Dohnalova, P. Sulcova, New inorganic pigments based on SrSnO3 doped by V2O5. J. Therm. Anal. Calorim. 113, 161–167 (2013)CrossRefGoogle Scholar
  10. 10.
    Z. Dohnalova, N. Gorodylova, P. Sulcova, M. Vlcek, Synthesis and characterization of terbium-doped SrSnO3 pigments. Ceram. Int. 40, 12637–12645 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Ouni, S. Nouri, H. Khemakhem, R.B. Hassen, Phase transitions, dielectric properties, and vibrational study of stannates perovskites Sr1–xErxSnO3–δ. Mater. Res. Bull 51, 136–140 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Li, H. Zhang, B. Guo, M. Wei, Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition. Electrochim. Acta 70, 313–317 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Muralidharan, V. Anbarasu, A.E. Perumal, K. Sivakumar, Room temperature ferromagnetism in Cr doped SrSnO3 perovskite system. J. Mater. Sci. 28, 4125 (2017)Google Scholar
  14. 14.
    G. Prathiba, S. Venkatesh, N.H. Kumar, Structural, magnetic and semiconducting properties of Fe doped SrSnO3. Solid State Commun. 150, 1436–1438 (2010)CrossRefGoogle Scholar
  15. 15.
    V. Thangadurai, P.S. Beurmann, W. Weppner, Mixed oxide ion and electronic conductivity in perovskite-type SrSnO3 by Fe substitution. Mater. Sci. Eng. B. 100, 18–22 (2003)CrossRefGoogle Scholar
  16. 16.
    T. Yamashita, K. Ueda, Blue photoluminescence in Ti-doped alkaline-earth stannates. J. Solid State Chem 180, 1410–1413 (2007)CrossRefGoogle Scholar
  17. 17.
    D. Melo, R.M.M. Marinho, F.T.G. Vieira, S.J.G. Lima, E. Longo, A.G. Souza, A.S. Maia, I.M.G. Santos, Influence of Cu(II) in the SrSnO3 crystallization. J. Therm. Anal. Calorim. 106, 513–517 (2011)CrossRefGoogle Scholar
  18. 18.
    K.S. Roh, K.H. Ryu, C.H. Yo, Non stoichiometry and physical properties of the SrSn1–xFexO3–y system. J. Solid State Chem 142, 288–293 (1999)CrossRefGoogle Scholar
  19. 19.
    G.L. Lucena, A.S. Maia, A.G. Souz, I.M.G. Santos, Structural changes in Fe-doped SrSnO3 perovskites during thermal analysis. J. Therm. Anal. Calorim. 115, 137–144 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Misra, K.I. Gnanasekaran, R.V. SubbaRao, V. Jayaramanan, T. Gnanasekaranan, Electrical conductivity and oxygen sensing behavior of SrSn1–xFexO3–δ (x = 0–0.2). J. Alloys Compd. 506, 285–292 (2010)CrossRefGoogle Scholar
  21. 21.
    [21]C.W. Lee, D.W. Kimb, I.S. Cho, S. Park, S.S. Shin, S.W. Seo, K.S. Honga, Simple synthesis and characterization of SrSnO3 nanoparticles with enhanced photocatalytic activity. Int. J. Hydrogen energy 37, 10557–10563 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Wang, M.K. Lu, G.J. Zhou, Y.Y. Zhou, A.Y. Zhang, Z.S. Yang, Systematic investigations in to SrSnO3 nanocrystals (I) synthesis by using combustion and co-precipitation methods. J. Alloys Compd. 432, 265–268 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Bohnemann, R. Libanori, M.L. Moreira, E. Longo, High-efficient microwave synthesis and characterization of SrSnO3. Chem. Eng. J. 155, 905–909 (2009)CrossRefGoogle Scholar
  24. 24.
    L. Chao, Z. Youqi, F. Shaoming, W. Huanxin, G. Yanghai, B. Lei, C. Rongfeng, Preparation and characterization of SrSnO3nanorods’. J. Phys. Chem. Solids 72, 869–874 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Basu, D.K. Patel, J. Nuwad, V. Sudarsan, S.N. Jha, D. Bhattacharyya, R.K. Vatsa, S.K. Kulshreshtha, Probing local environments in Eu3+ doped SrSnO3 nano-rods by luminescence and Sr K-edge EXAFS techniques. Chem. Phys. Lett. 561, 82–86 (2013)CrossRefGoogle Scholar
  26. 26.
    A.A. Kumar, A. Kumar, J.K. Quamara, G.R. Dillip, S.W. Joo, J. Kumar, Fe(III) induced structural, optical, and dielectric behavior of cetyltrimethyl ammonium bromide stabilized strontium stannate nanoparticles synthesized by a facile wet chemistry route. RSC Adv. 5, 17202 (2015)CrossRefGoogle Scholar
  27. 27.
    P.S. Beurmann, V. Thangadurai, W. Weppner, Phase transitions in the SrSnO3–SrFeO3 solid solutions: X-ray diffraction and Mössbauer studies. J. Solid State Chem. 174, 392–402 (2003)CrossRefGoogle Scholar
  28. 28.
    M.C.F. Alves, M.R. Nascimento, S.J.G. Lima, P.S. Pizani, J.W.M. Espinosa, E. Longo, L.E.B. Soledade, A.G. Souza, I.M.G. Santos, Influence of synthesis conditions on carbonate entrapment in perovskite SrSnO3. Mater. Lett. 63, 118–120 (2009)CrossRefGoogle Scholar
  29. 29.
    M.C.F. Alves, S.C. Souza, H.H.S. Lima, M.R. Nascimento, M.R.S. Silva, J.W.M. Espinosa, S.J.G. Lima, E. Longod, P.S. Pizani, L.E.B. Soledadea, A.G. Souzaa, I.M.G. Santosa, Influence of the modifier on the short and long range disorder of stannate perovskites. J. Alloys Compd. 476, 507–512 (2009)CrossRefGoogle Scholar
  30. 30.
    N. Sharma, K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Anodic behaviour and X-ray photoelectron spectroscopy of ternary tin oxides. J. Power Sources 139, 250–260 (2005)CrossRefGoogle Scholar
  31. 31.
    D.J. Singh, Q. Xu, K.P. Ong, Strain effects on the band gap and Optical properties of perovskite SrSnO3 and BaSnO3. Appl. Phys. Lett. 104, 011910 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Mizoguchi, P.M. Woodward, C.H. Park, D.A. Keszler, Strong near-infrared luminescence in BaSnO3. J. Am. Chem. Soc. 126, 9796–9800 (2004)CrossRefGoogle Scholar
  33. 33.
    D.K. Patel, B. Rajeswari, V. Sudarsan, R.K. Vatsa, R.M. Kadam, S.K. Kulshreshtha, Structural, luminescence and EPR studies on SrSnO3 nanorods doped with europium ions. Dalton Trans. 41, 12023 (2012)CrossRefGoogle Scholar
  34. 34.
    I. Ardelean, P. Pascuta, L.V. Giurgiu, EPR and magnetic susceptibility investigations of Fe2O3–B2O3–KCL classes. Int. J. Mod. Phys. B 17, 3049 (2003)CrossRefGoogle Scholar
  35. 35.
    K. Balamurugan, N.H. Kumar, J.A. Chelvane, P.N. Santhosh, Room temperature ferromagnetism in Fe-doped BaSnO3. J. Alloys Compd. 472, 9–12 (2009)CrossRefGoogle Scholar
  36. 36.
    S.G. Bahoosh, J.M. Wesselinowa, The origin of magnetism in perovskite ferroelectric ABO3 nanoparticles (A = K, Li; B = Ta, Nb or A = Ba, Sr, Pb; B = Ti). J. Appl. Phys. 112, 053907 (1–6) (2012)CrossRefGoogle Scholar
  37. 37.
    K. Balamurugan, N.H. Kumar, B. Ramachandran, M.S.R. Rao, J.A. Chelvane, P.N. Santhosh, Magnetic and optical properties of Mn-doped BaSnO3. Solid State Commun. 149, 884–887 (2009)CrossRefGoogle Scholar
  38. 38.
    W. Wang, Z. Wang, Y. Hong, J. Tang, M. Yu, Structure and magnetic properties of Cr/Fe-doped SnO2 thin films. J. Appl. Phys. 99, 08M115 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Muralidharan
    • 1
    Email author
  • R. Thiyagarajan
    • 2
    • 3
  • K. Sivakumar
    • 4
  • K. Sivaji
    • 1
  1. 1.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  2. 2.Institute of Solid State and Materials Physics (IFMP)Dresden University of TechnologyDresdenGermany
  3. 3.Dresden High Magnetic Field LaboratoryHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  4. 4.Department of PhysicsAnna UniversityChennaiIndia

Personalised recommendations