Electrospun β-Mo2C/CNFs as an efficient sulfur host for rechargeable lithium sulfur battery

  • Ruiyuan Zhuang
  • Shanshan YaoEmail author
  • Xiangqian Shen
  • Tianbao Li
  • Shibiao Qin
  • Jianhong Yang


Lithium–sulfur (Li–S) battery with a high energy density is being considered the promising energy storage devices. However, it is a challenge to develop high performance electrodes for commercialization of rechargeable Li–S battery system because of the dissolution of polysulfides during charging and discharging process and the insulating nature of sulfur. In this work, we firstly demonstrate the novel host material of β-molybdenum carbide/carbon nanofibers (β-Mo2C/CNFs) with good electrical conductivity and porous structure, which is synthesized via the facile one-pot electrospinning method and subsequent thermal treatment to impregnate sulfur in Li–S battery. The as-prepared β-Mo2C/CNFs act as polysulfide reservoirs to alleviate the shuttle effect by the physical and chemical adsorption. Meanwhile, the mesoporous structure of β-Mo2C/CNFs can facilitate the electron transport for surface reactions and improve the reaction kinetics. It is demonstrated that β-Mo2C/CNFs/sulfur composite displays a high lithium-ion diffusion coefficient, a low interfacial resistance and excellent electrochemical performance than that of CNFs/sulfur and pure sulfur.



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51874146, 51504101), the China Postdoctoral Science Foundation(Grant Nos. 2018T110551, 2017M621640), the Six Talent Peaks Project of Jiangsu Province (XCL-125), the Natural Science Foundation of Jiangsu Province (Grant No. BK20150514), the Natural Science Foundation of Jiangsu Provincial Higher Education of China (Grant No. 15KJB430006), the Start-up Foundation of Jiangsu University for Senior Talents (Grant No. 15JDG014).

Supplementary material

10854_2019_755_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 81 KB)


  1. 1.
    X. Yang, L. Zhang, F. Zhang, Y. Huang, Y.S. Chen, ACS Nano 8, 5208–5215 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Manthiram, Y.Z. Fu, S.H. Chuang, C.X. Zu, Y.S. Su, Chem. Rev. 114, 11751–11787 (2014)CrossRefGoogle Scholar
  3. 3.
    Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Nat. Energy. 1, 16132 (2016)CrossRefGoogle Scholar
  4. 4.
    X.L. Ji, S. Evers, R. Black, L.F. Nazar, Nat. Commun. 2, 325 (2011)CrossRefGoogle Scholar
  5. 5.
    M.Q. Liu, J.L. Hou, J. Xiang, X.Q. Shen, K.J. Luan, Y.J. Zhang, J. Nanosci. Nanotechnol. 18, 7824–7829 (2018)CrossRefGoogle Scholar
  6. 6.
    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, Nat. Commun. 6, 5682 (2015)CrossRefGoogle Scholar
  7. 7.
    S.S. Yao, S.K. Xue, Y.J. Zhang, X.Q. Shen, X.Y. Qian, T.B. Li, K.S. Xiao, S.B. Qin, J. Xiang, J. Mater. Sci 28, 7264–7270 (2017)Google Scholar
  8. 8.
    Y.J. Zhang, S.S. Yao, R.Y. Zhuang, K.J. Luan, X.Y. Qian, J. Xiang, X.Q. Shen, T.B. Li, K.S. Xiao, S.B. Qin, J. Alloys Compd. 729, 1136–1144 (2017)CrossRefGoogle Scholar
  9. 9.
    Q. Pang, D. Kundu, L.F. Nazar, Mater. Horiz. 3, 130–136 (2016)CrossRefGoogle Scholar
  10. 10.
    D.K. Nandi, U.K. Sen, D. Choudhury, S. Mitra, S.K. Sarkar, ACS Appl. Mater. Interfaces 6, 6606–6615 (2014)CrossRefGoogle Scholar
  11. 11.
    Z.H. Sun, J.Q. Zhang, L.C. Yin, G.J. Hu, R.P. Fang, H.-M. Cheng, F. Li, Nat. Commun. 8, 14627 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Liang, A. Garsuch, L.F. Nazar, Angew. Chem. Int. Ed. 54, 3907–3911 (2015)CrossRefGoogle Scholar
  13. 13.
    X.Q. Zhao, M. Liu, Y. Chen, B. Hou, N. Zhang, B.B. Chen, N. Yang, K. Chen, J.L. Li, L. An, J. Mater. Chem. A 3, 7870–7876 (2015)CrossRefGoogle Scholar
  14. 14.
    C. Lin, W.K. Zhang, L. Wang, Z.Q. Wang, W. Zhao, W.H. Duan, Z.Q. Zhao, B. Liu, J. Jin, J. Mater. Chem. A 4, 5993–5998 (2016)CrossRefGoogle Scholar
  15. 15.
    Q.L. Sun, Y. Dai, Y.D. Ma, T. Jin, W. Wei, B.B. Huang, J. Phys. Chem. Lett. 7, 937–943 (2016)CrossRefGoogle Scholar
  16. 16.
    Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nat. Commun. 5, 4759 (2014)CrossRefGoogle Scholar
  17. 17.
    W.F. Chen, C.H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J.T. Muckerman, R.R. Adzic, Energy Environ. Sci. 6, 943–951 (2013)CrossRefGoogle Scholar
  18. 18.
    R.Y. Zhuang, S.S. Yao, M.X. Jing, X.Q. Shen, J. Xiang, T.B. Li, K.S. Xiao, S.B. Qin, Beilsein J. Nanotechnol. 9, 262–270 (2018)CrossRefGoogle Scholar
  19. 19.
    J.Y. Lei, Z.Q. Jiang, X.F. Lu, G.D. Nie, C. Wang, Electrochim. Acta 176, 149–155 (2015)CrossRefGoogle Scholar
  20. 20.
    Z. Yuan, H.J. Peng, J.Q. Huang, X.Y. Liu, D.W. Wang, X.B. Cheng, Q. Zhang, Adv. Funct. Mater. 24, 6105–6112 (2014)CrossRefGoogle Scholar
  21. 21.
    S.S. Yao, S.K. Xue, S.H. Peng, M.X. Jing, X.Y. Qian, X.Q. Shen, T.B. Li, Y.H. Wang, J. Mater. Sci. 20, 17921–17930 (2018)Google Scholar
  22. 22.
    X.Y. Tao, J.G. Wang, Z.G. Ying, Q.X. Cai, G.Y. Zheng, Y.P. Gan, H. Huang, Y. Xia, C. Liang, W.K. Zhang, Y. Cui, Nano Lett. 14, 5288–5294 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Yao, S. Xue, S. Peng, R. Guo, Z. Wu, X. Shen, T. Li, L. Wang, Appl. Phys. A 127, 758 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Tang, S. Yao, M. Jing, X. Wu, J. Hou, X. Qian, D. Rao, X. Shen, X. Xi, K. Xiao, Electrochim. Acta 176, 442–447 (2015)CrossRefGoogle Scholar
  25. 25.
    Z.B. Xiao, Z. Yang, H.G. Nie, Y.Q. Lu, K.Q. Yang, S.M. Huang, J. Mater. Chem. A 2, 8683–8689 (2014)CrossRefGoogle Scholar
  26. 26.
    X. Wu, S. Yao, J. Hou, M. Jing, X. Qian, X. Shen, J. Xiang, X. Xi, J. Nanosci. Nanotechnol. 17, 2482–2487 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Lu, Y. Cheng, X. Wu, J. Liu, Nano Lett. 13, 2485–2489 (2013)CrossRefGoogle Scholar
  28. 28.
    X.B. Yang, W. Zhu, G.B. Cao, X.D. Zhao, RSC Adv. 6, 7159–7171 (2016)CrossRefGoogle Scholar
  29. 29.
    Y.H. Wu, M.X. Gao, X. Li, Y.F. Liu, H.G. Pan, J. Alloys Compd. 608, 220–228 (2014)CrossRefGoogle Scholar
  30. 30.
    M.M. Rao, X.Y. Geng, X.P. Li, S.J. Hu, W.S. Li, J. Power Sources 212, 179–185 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Tang, S.S. Yao, M.X. Jing, X. Wu, J.L. Hou, X.Y. Qian, D.W. Rao, X.Q. Shen, X.M. Xi, K.S. Xiao, J. Alloys Compd. 650, 351–356 (2015)CrossRefGoogle Scholar
  32. 32.
    X.B. Huang, X. Li, H.Y. Wang, Z.L. Pan, M.Z. Qu, Z.L. Yu, Electrochim. Acta 55, 7362–7366 (2010)CrossRefGoogle Scholar
  33. 33.
    N.A. Cañas, K. Hirose, B. Pascucci, N. Wagner, K.A. Friedrich, R. Hiesgen, Electrochim. Acta 97, 42–51 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Tang, S. Yao, S. Xue, M. Liu, L. Chen, M. Jing, X. Shen, T. Li, K. Xiao, S. Qin, Electrochim. Acta 263, 158–167 (2018)CrossRefGoogle Scholar
  35. 35.
    A.Y. Shenouda, H.K. Liu, J. Electrochem. Soc. 157, A1183–A1187 (2010)CrossRefGoogle Scholar
  36. 36.
    C.Y. Fan, P. Xiao, H.H. Li, H.F. Wang, L.L. Zhang, H.Z. Sun, X.L. Wu, H.M. Xie, J.P. Zhang, ACS Appl. Mater. Interfaces 7, 27959–27967 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ruiyuan Zhuang
    • 1
  • Shanshan Yao
    • 1
    Email author
  • Xiangqian Shen
    • 1
    • 2
  • Tianbao Li
    • 2
  • Shibiao Qin
    • 2
  • Jianhong Yang
    • 3
  1. 1.Institute for Advanced Materials, School of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Hunan Engineering Laboratory of Power Battery Cathode MaterialsChangsha Research Institute of Mining and MetallurgyChangshaPeople’s Republic of China
  3. 3.Institute of Green Materials and Metallurgy, School of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations