Superior positive relative humidity sensing properties of porous nanostructured Al:ZnO thin films deposited by jet-atomizer spray pyrolysis technique

  • Soumalya Kundu
  • Rahul Majumder
  • Ria Ghosh
  • Manish Pal ChowdhuryEmail author


A highly responsive resistive type humidity sensor is fabricated from porous aluminium-doped ZnO (Al:ZnO, AZO) thin films deposited by using jet-atomizer spray pyrolysis technique. The deposited thin films are calcined at various temperatures, ranging from 450 to 650 °C, to improve the crystallinity, electrical and optical properties. Electrical resistivity of the films is measured by Van der Pauw technique. Lowest resistivity of 13 Ω·cm is obtained for 3 at.% AZO samples calcined at 500 °C. Humidity sensing properties like responsivity, sensitivity, repeatability, response time and recovery time of the AZO samples are investigated at room temperature in the range of 10–90% of relative humidity (RH). Among all the samples, 5 at.% AZO thin films show the highest responsivity of 733% at 90% RH. In contrast to other ZnO based sensors, it is found that the resistance of the AZO sensors, prepared in our method, increases with the increase of relative humidity. A sensing mechanism of the AZO and ZnO thin films is proposed to explain the water adsorption technique and the cause of increase in resistance of the sensors during water adsorption.



Authors would like to say thanks to Department of Science and Technology (DST), INDIA for their financial support to this research.


  1. 1.
    A.I. Buvailo, Y. Xing, J. Hines, N. Dollahon, E. Borguet, Appl. Mater. Interfaces 3, 528–533 (2011)CrossRefGoogle Scholar
  2. 2.
    B.M. Kulwicki, J. Am. Ceram. Soc. 74, 697–708 (1991)CrossRefGoogle Scholar
  3. 3.
    E. Traversa, Sens. Actuators B 23, 135–156 (1995)CrossRefGoogle Scholar
  4. 4.
    V. Shakya, N.K. Pandey, S.K. Misra, A. Roy, Bull. Mater. Sci. 40, 253–262 (2017)CrossRefGoogle Scholar
  5. 5.
    M.V. Arularasu, R. Sundaram, Sens Bio-Sens Res 11, 20–25 (2016)CrossRefGoogle Scholar
  6. 6.
    N.M. Kiasari, S. Soltanian, B. Gholamkhass, P. Servati, Sens Actuators A 182, 101–105 (2012)CrossRefGoogle Scholar
  7. 7.
    T. Thiwawong, K. Onlaor, B. Tunhoo, Adv Mater Sci Eng 2013, 7 (2013)CrossRefGoogle Scholar
  8. 8.
    Z.L. Wang, J. Phys.: Cond. Matter 16, R829 (2004)Google Scholar
  9. 9.
    X. Wang, Y. Ding, Z. Li, J. Song, Z. Wang, J. Phys. Chem. C 113, 1791–1794 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001)CrossRefGoogle Scholar
  11. 11.
    S.K. Shukla, A. Tiwari, G.K. Parashar, A.P. Mishra, G.C. Dubeye, Talanta 80, 565–571 (2009)CrossRefGoogle Scholar
  12. 12.
    A.B. Hartanto, X. Ning, Y. Nakata, T. Okada, Appl. Phys. A 78, 299–301 (2004)CrossRefGoogle Scholar
  13. 13.
    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430–4431 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Ranjbar, M.A. Taher, A. Sam, J. Clust. Sci. 25, 1657–1664 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Znaidi, Mater. Sci. Eng. B 174, 18–30 (2010)CrossRefGoogle Scholar
  16. 16.
    W.P. Tai, J.H. Oh, J. Mater. Sci.:Mater. Elec. 13, 391–394 (2002)Google Scholar
  17. 17.
    Y. Liu, Y. Li, H. Zeng, J. Nanomater. 2013, 9 (2013) pagesGoogle Scholar
  18. 18.
    K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1–46 (1983)CrossRefGoogle Scholar
  19. 19.
    K. Mahmood, S.B. Park, Electron. Mater. Lett. 9, 161–170 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Uzar, G. Algun, N. Akcay, D. Akcan, L. Arda, J. Mater. Sci.:Mater. Elec. 28, 11861–11870 (2017)Google Scholar
  21. 21.
    N.F. Hsu, M. Chang, C.H. Lin, Microsyst. Technol. 19, 1737–1743 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Fan, T. Li, H. Heng, Bull. Mater. Sci. 39, 19–26 (2016)CrossRefGoogle Scholar
  23. 23.
    G. Akgul, F.A. Akgul, H.E. Unalan, R. Turan, Phil. Mag. 96, 1093–1109 (2016)CrossRefGoogle Scholar
  24. 24.
    G.S. Thool, A.K. Singh, R.S. Singh, A. Gupta, M.A.B.H. Susan, J. Saudi Chem. Soc. 18, 712–721 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Ranjbar, M.S. Niasari, S.M.H. Mashkani, J. Inorg. Organomet. Polym. 22, 1093–1100 (2012)CrossRefGoogle Scholar
  26. 26.
    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Appl. Nanosci. 5, 993–1001 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Yang, M. Bai, X. Bao, J. Wang, W. Zhang, J. Nanomed. Nanotechnol. 7, 1–5 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Yilmaz, D. Tatar, E. Sonmez, C. Cirak, S. Aydogan, R. Gunturkun, Synthesis and reactivity in inorganic, metal-organic. and Nano Metal Chem. 46, 489–494 (2016)CrossRefGoogle Scholar
  29. 29.
    D. Zhang, Y. Sun, P. Li, Y. Zhang, ACS Appl. Mater. Interfaces. 8, 14142–14149 (2016)CrossRefGoogle Scholar
  30. 30.
    P. Chauhan, S. Annapoorni, S.K. Trikha, Thin Solid Films 346, 266–268 (1999)CrossRefGoogle Scholar
  31. 31.
    K.S. Chou, T.K. Lee, F.J. Liu, Sens. Actuators B 56, 106–111 (1999)CrossRefGoogle Scholar
  32. 32.
    Z. Chen, C. Lu, Sens. Lett. 3, 274–295 (2005)CrossRefGoogle Scholar
  33. 33.
    D.P. Bhattacharyya, A.K. Dey, P.N. Mukherjee, J. Res. Inst. Catalysis 24, 149–158 (1976)Google Scholar
  34. 34.
    Y. Zhang, X. Pan, Z. Wang, Y. Hu, X. Zhou, Z. Hu, H. Gu, RSC Adv. 5, 20453–20458 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Soumalya Kundu
    • 1
  • Rahul Majumder
    • 1
  • Ria Ghosh
    • 1
  • Manish Pal Chowdhury
    • 1
    Email author
  1. 1.Department of PhysicsIIESTShibpur, HowrahIndia

Personalised recommendations