Advertisement

Schottky diode based resistive switching device based on ZnO/PEDOT:PSS heterojunction to reduce sneak current problem

  • Muhammad Umair Khan
  • Gul Hassan
  • Muhammad Asim Raza
  • Jinho BaeEmail author
  • Nobuhiko P. Kobayashi
Article

Abstract

To realize an asymmetric function blockable sneak currents in the resistive switching memory device, we propose a novel schottky diode based high charge density resistive switching device based on zinc oxide (ZnO) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) heterojunction, which is structured with bottom and top electrode as indium tin oxide (ITO) and silver (Ag), respectively. The heterojunction layers are deposited through a spin coater on ITO coated polyethylene terephthalate (PET) substrate. The hetrojunction resistive switching device is measured over more than 500 endurance cycles on dual polarity voltage of ± 3 V. The stability of the memory device is analyzed for more than 30 days with high resistance state (HRS) and low resistance state (LRS) as 531047870.8 Ω and 1001636.011 Ω, respectively, at reading voltage of 1.28 V in forward current, and its Roff/Ron ratio is recorded as ~ 530. In reverse current, the HRS ~ 153081392.6 Ω and LRS ~ 19034020.25 Ω are recorded at voltage read of ~ − 1.28 V and they are both high resistance as its Roff/Ron ratio is ~ 8.04. This asymmetric function insures that the proposed memory device helps to reduce the sneak current. Hence, it can be applied in flexible resistive switching devices to blocking sneak current problem.

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2016R1A2B4015627).

References

  1. 1.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80 (2008)CrossRefGoogle Scholar
  2. 2.
    O. Kavehei, A. Iqbal, Y.S. Kim, K. Eshraghian, S.F. Al-Sarawi, D. Abbott, The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc. R Soc. A 466, 2175 (2010)CrossRefGoogle Scholar
  3. 3.
    T. Prodromakis, Two centuries of memristors, in Chaos, CNN, Memristors and Beyond, WORLD SCIENTIFIC2012, pp. 508–517Google Scholar
  4. 4.
    L. Chua, Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  5. 5.
    J. Borghetti, Z. Li, J. Straznicky, X. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams, A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. USA. 106, 1699 (2009)CrossRefGoogle Scholar
  6. 6.
    B. Ricco, G. Torelli, M. Lanzoni, A. Manstretta, H.E. Maes, D. Montanari, A. Modelli, Nonvolatile multilevel memories for digital applications. Proc. IEEE 86, 2399–2423 (1998)CrossRefGoogle Scholar
  7. 7.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Flexible frequency selective passive circuits based on memristor and capacitor. Org. Electron. 51, 119–127 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Xiaoyi, L. Shibing, Z. Kangwei, L. Xiaoyu, W. Guoming, L. Xiaojuan, L. Qi, L. Hangbing, W. Ming, X. Hongwei, S. Haitao, S. Pengxiao, S. Jordi, L. Ming, Investigation on the RESET switching mechanism of bipolar Cu/HfO 2 /Pt RRAM devices with a statistical methodology. J. Phys. D: Appl. Phys. 46, 245107 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Li, J. Ma, S. Chen, Y. Huang, J. He, Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Mater. Sci. Eng. C 89, 25–32 (2018)CrossRefGoogle Scholar
  11. 11.
    G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)CrossRefGoogle Scholar
  12. 12.
    G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 536, 548–555 (2019)CrossRefGoogle Scholar
  13. 13.
    J.J.T. Wagenaar, M. Morales-Masis, J.M. van Ruitenbeek, Observing “quantized” conductance steps in silver sulfide: Two parallel resistive switching mechanisms. J. Appl. Phys. 111, 014302 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu, H. Sun, X. Miao, Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3, 1619 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices 54, 2762–2768 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Ali, J. Bae, C.H. Lee, K.H. Choi, Y.H. Doh, All-printed and highly stable organic resistive switching device based on graphene quantum dots and polyvinylpyrrolidone composite. Org. Electron. 25, 225–231 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Ma, Y. Yang, W. Li, R. Feng, Z. Li, P. Lyu, Y. Ma, Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. J. Mater. Sci. 54, 323–334 (2019)CrossRefGoogle Scholar
  18. 18.
    G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)CrossRefGoogle Scholar
  19. 19.
    G. Hassan, M.U. Khan, J. Bae, Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism. Appl. Phys. A 125, 18 (2018)CrossRefGoogle Scholar
  20. 20.
    M.U. Khan, G. Hassan, M.A. Raza, J. Bae, Bipolar resistive switching device based on N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/poly(vinyl alcohol) bilayer stacked structure. Appl. Phys. A 124, 726 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Ali, J. Bae, K.H. Choi, C.H. Lee, Y.H. Doh, S. Shin, N.P. Kobayashi, Organic non-volatile memory cell based on resistive elements through electro-hydrodynamic technique. Org. Electron. 17, 121–128 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Ali, J. Bae, C.H. Lee, S. Shin, N.P. Kobayashi, Ultra-low power non-volatile resistive crossbar memory based on pull up resistors. Org. Electron. 41, 73–78 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Quinteros, R. Zazpe, F.G. Marlasca, F. Golmar, F. Casanova, P. Stoliar, L. Hueso, P. Levy, HfO2 based memory devices with rectifying capabilities. J. Appl. Phys. 115, 024501 (2014)CrossRefGoogle Scholar
  24. 24.
    A.A. Zakhidov, B. Jung, J.D. Slinker, H.D. Abruña, G.G. Malliaras, A light-emitting memristor. Org. Electron. 11, 150–153 (2010)CrossRefGoogle Scholar
  25. 25.
    Q.-D. Ling, D.-J. Liaw, C. Zhu, D.S.-H. Chan, E.-T. Kang, K.-G. Neoh, Polymer electronic memories: materials, devices and mechanisms. Prog. Polym. Sci. 33, 917–978 (2008)CrossRefGoogle Scholar
  26. 26.
    G. Hassan, S. Ali, J. Bae, C.H. Lee, Flexible resistive switching device based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/poly(4-vinylphenol) (PVP) composite and methyl red heterojunction. Appl. Phys. A 123, 256 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Joshua Yang, M.X. Zhang, M.D. Pickett, F. Miao, J. Paul Strachan, W.-D. Li, W. Yi, D.A.A. Ohlberg, B. Joon Choi, W. Wu, J.H. Nickel, G. Medeiros-Ribeiro, R. Stanley Williams, Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501 (2012)CrossRefGoogle Scholar
  28. 28.
    F. Zheng, F. Xudong, A. Li, D. Lixin, Resistive switching in copper oxide nanowire-based memristor, in 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO) (2012), pp. 1–4Google Scholar
  29. 29.
    Y. Jo, B.U. Jang, J. Kim, D. Kim, H. Woo, I. Kim, W. Park, H. Im, H. Kim, Multi-valued resistive switching characteristics in WOx/AlOyheterojunction resistive switching memories. J. Korean Phys. Soc. 64, 173–176 (2014)CrossRefGoogle Scholar
  30. 30.
    Z.-J. Liu, J.-Y. Gan, T.-R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Appl. Phys. Lett. 100, 153503 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Ali, J. Bae, C. Hyun Lee, N. Kobayashi, S. Shin, A. Ali, Resistive switching device with highly-asymmetric current-voltage characteristics: a solution to backward sneak current in passive crossbar arrays. Nanotechnology 29, 455201 (2018)CrossRefGoogle Scholar
  32. 32.
    X. Yan, H. Hao, Y. Chen, S. Shi, E. Zhang, J. Lou, B. Liu, Self-rectifying performance in the sandwiched structure of Ag/In-Ga-Zn-O/Pt bipolar resistive switching memory. Nanoscale Res. Lett. 9(1), 548 2014CrossRefGoogle Scholar
  33. 33.
    B. Jinho, P.K. Nobuhiko, Semiconductor Science and Technology, Semiconductor Science and Technology (Wiley, New York, 2019)Google Scholar
  34. 34.
    J.J.L. Hmar, Flexible resistive switching bistable memory devices using ZnO nanoparticles embedded in polyvinyl alcohol (PVA) matrix and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). RSC Adv. 8, 20423–20433 (2018)CrossRefGoogle Scholar
  35. 35.
    Y.J. Lee, C. Yeon, J.W. Lim, S.J. Yun, Flexible p-type PEDOT:PSS/a-Si:H hybrid thin film solar cells with boron-doped interlayer. Sol. Energy 163, 398–404 (2018)CrossRefGoogle Scholar
  36. 36.
    X. Zhang, J. Zhai, X. Yu, L. Ding, W. Zhang, Fabrication and characterization of flexible Ag/ZnO Schottky diodes on polyimide substrates. Thin Solid Films 548, 623–626 (2013)CrossRefGoogle Scholar
  37. 37.
    G.M. Kumar, P. Ilanchezhiyan, F. Xiao, C. Siva, A.M. Kumar, V. Yalishev, S.U. Yuldashev, T.W. Kang, Blue luminescence and Schottky diode applications of monoclinic HfO2 nanostructures. RSC Adv. 6, 57941–57947 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Ali, J. Bae, C.H. Lee, Organic diode with high rectification ratio made of electrohydrodynamic printed organic layers. Electron. Mater. Lett. 12, 270–275 (2016)CrossRefGoogle Scholar
  39. 39.
    T.A. Krajewski, G. Luka, P.S. Smertenko, A.J. Zakrzewski, K. Dybko, R. Jakieła, L. Wachnicki, S. Gieraltowska, B.S. Witkowski, M. Godlewski, E. Guziewicz, Schottky junctions based on the ALD-ZnO thin films for electronic applications. Acta Phys. Pol. A 120(6A), A17–A21 (2011)Google Scholar
  40. 40.
    C.H. Ramana, M. Moodley, V. Kannan, Electrical characteristics of ITO/MEH-PPV/ZnO/Al structure. Nanosci. Nanotechnol. 6(3), 238–241 (2014)Google Scholar
  41. 41.
    C. Bo, L. Jian-Chang, M. Jia-Jie, Flexible one diode-one resistor composed of ZnO/poly (fluorene-alt-benzothiadiazole) (PFBT) heterojunction diode and TiO2 resistive memory. Mater. Res. Express 5, 066429 (2018)CrossRefGoogle Scholar
  42. 42.
    M. Marzocchi, I. Gualandi, M. Calienni, I. Zironi, E. Scavetta, G. Castellani, B. Fraboni, Physical and electrochemical properties of PEDOT:PSS as a tool for controlling cell growth. ACS Appl. Mater. Interfaces 7, 17993–18003 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Liu, S. Pathak, T. Stergiopoulos, T. Leijtens, K. Wojciechowski, S. Schumann, N. Kausch-Busies, H.J. Snaith, Employing PEDOT as the p-type charge collection layer in regular organic–inorganic perovskite solar cells. J Phys. Chem. Lett. 6, 1666–1673 (2015)CrossRefGoogle Scholar
  44. 44.
    S.B. Yahia, L. Znaidi, A. Kanaev, J.P. Petitet, Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochim. Acta Part A 71, 1234–1238 (2008)CrossRefGoogle Scholar
  45. 45.
    J. Ouyang, C.W. Chu, F.C. Chen, Q. Xu, Y. Yang, Polymer optoelectronic devices with high-conductivity poly(3,4-ethylenedioxythiophene) anodes. J. Macromol. Sci. A 41, 1497–1511 (2004)CrossRefGoogle Scholar
  46. 46.
    V.S. Dongle, A.A. Dongare, N.B. Mullani, P.S. Pawar, P.B. Patil, J. Heo, T.J. Park, T.D. Dongale, Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. J. Mater. Sci.: Mater. Electron. 29, 18733–18741 (2018)Google Scholar
  47. 47.
    A.R. Poghosyan, E.Y. Elbakyan, R. Guo, R.K. Hovsepyan, Memristor memory element based on ZnO thin film structures, in Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX; 95861C (2015), pp. 5Google Scholar
  48. 48.
    A.S. Zoolfakar, R. Ab Kadir, R.A. Rani, S. Balendhran, X. Liu, E. Kats, S.K. Bhargava, M. Bhaskaran, S. Sriram, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Engineering electrodeposited ZnO films and their memristive switching performance. Phys. Chem. Chem. Phys. 15, 10376–10384 (2013)CrossRefGoogle Scholar
  49. 49.
    F. Atabaki, M.H. Yousefi, A. Abdolmaleki, M. Kalvandi, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) conductivity enhancement through addition of imidazolium-ionic liquid derivatives. Polym.-Plast. Technol. Eng. 54, 1009–1016 (2015)CrossRefGoogle Scholar
  50. 50.
    E. Katsia, N. Huby, G. Tallarida, B. Kutrzeba-Kotowska, M. Perego, S. Ferrari, F.C. Krebs, E. Guziewicz, M. Godlewski, V. Osinniy, G. Luka, Poly(3-hexylthiophene)/ZnO hybrid pn junctions for microelectronics applications. Appl. Phys. Lett. 94, 143501 (2009)CrossRefGoogle Scholar
  51. 51.
    J.J. Yang, M. Feng, D.P. Matthew, A.A.O. Douglas, R.S. Duncan, L. Chun Ning, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ocean System EngineeringJeju National UniversityJejuSouth Korea
  2. 2.Baskin School of EngineeringUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations