Optical and thermal quenching properties of Al-doped Ba1.98SiO4:0.02Eu2+ phosphor synthesized with different Si3N4/SiO2 ratio

  • Chuang WangEmail author
  • Jing Jiang
  • Ge Zhu
  • Shuangyu Xin


An intense emission green color phosphor of Al-doped Ba1.98SiO4:0.02Eu2+ synthesized with different Si3N4/SiO2 ratio was prepared by conventional sintering method. The X-ray diffraction patterns, the photoluminescence, scanning micrograph and thermal quenching properties of Ba1.98SiO4:0.02Eu2+ with different Si3N4/SiO2 ratio were investigated in detail. As the Si3N4/SiO2 ratio increases, the emission intensity enhanced gradually until the optimum Si3N4/SiO2 ratio reached 3/2. The PL intensity with Si3N4/SiO2 = 3/2 is about four times of the initial intensity of Ba1.98SiO4:0.02Eu2+ phosphor and the reason was discussed clearly. Furthermore, when we introduced Al3+ ions into the host, the samples exhibited outstanding optical properties and smaller thermal quenching behavior compared with Ba1.98SiO4:0.02Eu2+ phosphor. The emission intensity of Ba1.98Si1−xAlxO4:0.02Eu2+ series increased until x reached 7% and the emission intensity of x = 0.07 is 5 times of the originated intensity of Ba1.98SiO4:0.02Eu2+ synthesized without Si3N4. The smaller thermal quenching behavior of Al-doped phosphors was studied clearly, too. All the results suggested that Al-doped Ba1.98SiO4:0.02Eu2+ phosphor synthesized with Si3N4/SiO2 = 3/2 can be a candidate green phosphor for WLEDs.



This work is supported by the National Natural Science Foundation of China (Nos. 11704043, 51702378) and the Special Foundation for theoretical physics Research Program of China (Nos. 11747113, 11747117).


  1. 1.
    L. Wang, R.J. Xie, T. Suehiro, T. Takeda, N. Hirosaki, Down Conversion nitride materials for solid state lighting: recent advances and perspectives. Chem. Rev. 118, 1951–2009 (2018)CrossRefGoogle Scholar
  2. 2.
    X. Qin, X.W. Liu, W. Huang, M. Bettinelli, X.G. Liu, Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117, 4488–4527 (2017)CrossRefGoogle Scholar
  3. 3.
    Z.G. Xia, Q.L. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater Sci. 84, 59–117 (2016)CrossRefGoogle Scholar
  4. 4.
    M.M. Shang, S.S. Liang, H.Z. Lian, J. Lin, Luminescence properties of Ca19Ce(PO4)14:A (A = Eu3+/Tb3+/Mn2+) phosphors with abundant colors: abnormal coexistence of Ce4+/3+-Eu3+ and energy transfer of Ce3+ → Tb3+/Mn2+ and Tb3+-Mn2+. Inorg. Chem. 56, 6131–6140 (2017)CrossRefGoogle Scholar
  5. 5.
    E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308, 1274–1278 (2005)CrossRefGoogle Scholar
  6. 6.
    M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3, 160–175 (2007)CrossRefGoogle Scholar
  7. 7.
    R.J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, K. Sakuma, Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors. Appl. Phys. Lett. 88, 101–104 (2006)Google Scholar
  8. 8.
    C.C. Yang, C.M. Lin, Y.J. Chen, Y.T. Wu, S.R. Chuang, R.S. Liu, S.F. Hu, Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy)nitride green/red phosphors. Appl. Phys. Lett. 90, 123501–123503 (2007)CrossRefGoogle Scholar
  9. 9.
    B. Li, G. Annadurai, L.L. Sun, J. Liang, S.Y. Wang, Q. Sun, X.Y. Huang, High-efficiency cubic-phased blue-emitting Ba3Lu2B6O15:Ce3+ phosphors for ultraviolet-excited white-light-emitting diodes. Opt. Lett. 43, 5138–5141 (2018)CrossRefGoogle Scholar
  10. 10.
    K. Bando, K. Sakano, Y. Noguchi, Y.J. Shimizu, Development of high-bright and pure-white LED lamps. Light Visual Environ. 22, 1–2 (1998)CrossRefGoogle Scholar
  11. 11.
    P. Schlotter, J. Baur, C. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, Schneider, fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs. J. Mater. Sci. Eng. 59, 390–394 (1995)CrossRefGoogle Scholar
  12. 12.
    H. Guo, B. Devakumar, B. Li, X.Y. Huang, Novel Na3Sc2(PO4)3:Ce3+,Tb3+ phosphors for white LEDs: tunable blue–green color emission, high quantum efficiency and excellent thermal stability. Dyes Pigments. 151, 81–88 (2018)CrossRefGoogle Scholar
  13. 13.
    B. Lin, X.Y. Huang, Multicolour tunable luminescence of thermal-stable Ce3+/Tb3+/Eu3+-triactivated Ca3Gd(GaO)3(BO3)4 phosphors via Ce3+→Tb3+→Eu3+ energy transfer for near-UV WLEDs applications. Ceram Int. 44, 4915–4923 (2018)CrossRefGoogle Scholar
  14. 14.
    R. Aceves, M.B. Flores, P. Fabeni, Spectroscopy of CsPbBr3 quantum dots in CsBr:Pb crystals. J. Lumin. 93(1), 27–41 (2001)CrossRefGoogle Scholar
  15. 15.
    A. Swarnkar, R. Chulliyil, V.K. Ravi, Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. Int. Edit. 54, 15424–15428 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Li, L. Xu, T. Wang, Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater. 29(5), (2017)Google Scholar
  17. 17.
    T.C. Liu, B.M. Cheng, S.F. Hu, Highly stable red oxynitride β-SiAlON:Pr3+ phosphor for light-emitting diodes. Cheminform 42:44, (2011)Google Scholar
  18. 18.
    O. Yamamoto, M. Ishida, Y. Saitoh, Influence of Mg2+ on the formation of β-SiAlON by the carbothermal reduction-nitridation of homogeneous gel. Inorg. Chem. 3(3), 715–719 (2001)Google Scholar
  19. 19.
    C. Wang, Z. Zhao, Q. Wu, Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu(2+) by Mg(2+) doping. Dalton T. 44(22), 10321 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Wang, Z. Zhao, Q. Wu, The pure-phase Ba3 – xCaxSi6O12N2:Eu2+ green phosphor: synthesis, photoluminescence and thermal properties. Crystengcomm. 16(41), 9651–9656 (2014)CrossRefGoogle Scholar
  21. 21.
    K.A. Denault, J. Brgoch, M.W. Gaultois, A. Mikhailovsky, R. Petry, H. Winkler, S.P. DenBaars, R. Seshadri, Consequences of optimal bond valence on structural rigidity and improved luminescence properties in SrxBa2–xSiO4:Eu2+ orthosilicate phosphors. Chem. Mater. 26, 2275–2282 (2014)CrossRefGoogle Scholar
  22. 22.
    L.Z. He, Z. Song, Q.C. Xiang, Z.G. Xia, Q.L. Liu, Relationship between thermal quenching of Eu2+ luminescence andcation ordering in (Ba1–xSrx)2SiO4:Eu phosphors. J. Lumin. 180, 163–168 (2016)CrossRefGoogle Scholar
  23. 23.
    D.W. Wen, H. Kuwahara, H. Kato, M. Kobayashi, Y. Sato, T. Masaki, M. Kakihana, Anomalous orange light-emitting(Sr,Ba)2SiO4:Eu2+ phosphors for warm white LEDs. ACS Appl. Mater. Interfaces. 8, 11615–11620 (2016)CrossRefGoogle Scholar
  24. 24.
    L.Z. He, Z. Song, X.H. Jia, Z.G. Xia, Q.L. Liu, Consequence of optimal bonding on disordered structure and improved luminescence properties in T-phase (Ba,Ca)2SiO4:Eu2+ Phosphor. Inorg. Chem. 57, 4146–4154 (2018)CrossRefGoogle Scholar
  25. 25.
    L. Litian, N. Lixin, Z. Rongfu, J. Chunyan, P. Mingying, H. Yucheng, C. Jun, H. Yan, T. Ye, H. Liang, Site occupation and photoluminescence properties of Ce3+ in Sr4Ca4La2 (PO4)6O2: experiments and ab initio calculations. Opt. Mater. 57, 7090–7096 (2018)Google Scholar
  26. 26.
    F. Clabau, X. Rocquefelte, T.L. Mercier, P. Deniard, S. Jobic, M.H. Whangbo, Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect. Conglomerat. Chem. Mater. 18, 3212–3220 (2006)CrossRefGoogle Scholar
  27. 27.
    P. Dorenbos, Valence stability of lanthanide ions in inorganic. Compounds Chem. Mater. 17, 6452–6456 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Nikl, Wide band gap scintillation materials: progress in the technology and material understanding. Phys. Status Solid. 178(2), 595–620 (2015)CrossRefGoogle Scholar
  29. 29.
    V.V. Laguta, A. Vedda, D.D. Martino, M. Martini, M. Nikl, E. Mihokova, Y. Usuki, Electron capture in PbWO4: Mo and PbWO4:Mo, La single crystals: ESR and TSL study. Phys. Rev. B 71(23), 235108–235108 (2005)CrossRefGoogle Scholar
  30. 30.
    X.L. Liu, K. Han, M. Gu, L.H. Xiao, C. Ni, S.M. Huang, B. Liu, Effect ofcodopants on enhanced luminescence of GdTaO4:Eu3+ phosphors. SolidState Commun. 142, 680–684 (2007)CrossRefGoogle Scholar
  31. 31.
    C.W. Yeh, W.T. Chen, R.S. Liu, S.F. Hu, H.S. Sheu, J.M. Chen, H.T. Hintzen, Origin of thermal degradation of Sr2 – xSi5N8:Eux phosphors in air for light-emitting diodes. J. Am. Chem. Soc. 134(34), 14108–14117 (2012)CrossRefGoogle Scholar
  32. 32.
    K.S. Sohn, B. Lee, R.J. Xie, N. Hirosaki, Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+. Opt. Lett. 34(21), 3427–3429 (2009)CrossRefGoogle Scholar
  33. 33.
    R.J. Xie, N. Hirosaki, Y.Q. Li, T. Takeda, Photoluminescence of (Ba1–xEux)Si6N8O (0.005 ≤ x ≤ 0.2) phosphors. J. Lumin. 130, 266–269 (2010)CrossRefGoogle Scholar
  34. 34.
    [34]C. Wang, S. Xin, X. Wang, Double substitution induced tunable photoluminescence in the Sr2Si5N8:Eu phosphor lattice. New J Chem. 39(9), 6958–6964 (2015)CrossRefGoogle Scholar
  35. 35.
    L. Zhichao, Z. Lei, C. Wenbo, F. Xiaotong, Y. Xiuxia, Q. Jianbei, X. Xuhui, Multiple anti-counterfeiting realized in NaBaScSi2O7 with a single activator of Eu2+. J. Mater. Chem. C. 6, 11137–11143 (2018)Google Scholar
  36. 36.
    Z.J. Zhang, O.M. ten Kate, A. Delsing, E. van der Kolk, P.H.L. Notten, P. Dorenbos, J.T. Zhao, H.T. Hintzen, Photoluminescence properties and energy level locations of RE3+ (RE = Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors. J. Mater. Chem. 22, 9813 (2012)CrossRefGoogle Scholar
  37. 37.
    C.R. Ronda, Luminescence: from theory to applications. Wiley, New York (2008)Google Scholar
  38. 38.
    S. Shigeo, M. William, Phosphor handbook. (1998)Google Scholar
  39. 39.
    P. Dorenbos, Thermal quenching of Eu2+ 5d 4f luminescence in inorganic compounds. J. Phys-Condensed. 17(50), 8103–8111 (2005)CrossRefGoogle Scholar
  40. 40.
    C.L. Wang, Y.H. Jin*, Y. Lv, G.F. Ju, D. Liu, L. Chen, Z.Z. Li, Y.H. Hu, Trap distribution tailoring guided design of a super-long persistent phosphor Ba2SiO4:Eu2+, Ho3+ and photostimulable luminescence for optical information storage, J. Mater. Chem. C, 22, (2018)Google Scholar
  41. 41.
    W.B. Im, N.N. Fellows, S.P. DenBaars, R. Seshadri, La1–x–0.025Ce0.025Sr2+xAl1–xSixO5 solid solutions as tunable yellow phosphors for solid state white lighting. J. Mater. Chem. 19, 1325–1330 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of New EnergyBohai UniversityJinzhouPeople’s Republic of China

Personalised recommendations