Advertisement

Optical band gap and dielectric abnormality in (Sr, Ce, Zr)TiO3 composite ceramics sintered in nitrogen

  • Burhan UllahEmail author
  • Muneeb Ur-Rahman
  • Rajwali Khan
  • Zulfiqar
Article
  • 37 Downloads

Abstract

The crystal-chemical structure, band gap-grain structure and dielectric properties of (1−x)SrTiO3-xCe0.95Zr0.05O2 [(Sr,Ce,Zr)TiO3, for x = 0.0, 0.3 and 0.4] ceramics were investigated. Samples with 0.3 ≤ x ≤ 0.4 appeared cubic by X-ray diffraction (XRD), however, splitting of the peaks along with Rietveld refinement indicated tetragonal structure. The change in the band gap energy with Ce(x) have been investigated and are related to variation in the grain size, activation energy and octahedral tilting. The reduction in band gap energy with Ce0.95Zr0.05O2 ions (x = 0.4) is attributed to the widening of conduction band with octahedral tilting. The absence of TO2 (175 cm−1) mode while the existence of TO4 (521.72 cm−1) mode has been considered as sign of relaxor-like-dielectric behavior. The εT curve and the P–E loop analysis confirms that there is no signature of the ferroelectric phase in all samples. Base on the X-ray photoelectrons spectroscopy (XPS) and high temperature ac conductivity analysis, the dielectric anomalies were due to the formation of lattice defects and defect dipoles (\(~{\text{T}}{{\text{i}}^{{\text{4}}+}} \bullet \text{e}^{\prime} - V_{o}^{{ \bullet \bullet }} - {\text{T}}{{\text{i}}^{{\text{4}}+}} \bullet \text{e}^{\prime}~\), and \({V^{\prime\prime}_{Sr}} - ~V_{o}^{{ \bullet \bullet }}\)) generated by the Ti3+ ions and ionized oxygen vacancies.

Keywords

Crystal-band gap structure Oxygen vacancies Dielectric properties 

Notes

Acknowledgements

This fundamental research work was supported by the Higher Education Commission of Pakistan under initial start-up research grant program with Grant Number 21- 2106/SRGP/R&D/HEC/2018.

References

  1. 1.
    T. Alexander, O. Olena, M.V. Paula, L.K. Andrei, J. Phys.: Condens. Matter. 20, 415224 (2008)Google Scholar
  2. 2.
    T. Alexander, M.V. Paula, A. Abílio, J. Phys. D: Appl. Phys. 48, 085302 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Ang, Z. Yu, J. Appl. Phys. 91, 1487–1494 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Chen, Z. Yu, J. Appl. Phys. 107(11), 747–751 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Chen, Z. Yu, Z. Jing, Phys. Rev. B 61(2), 957–961 (2000)CrossRefGoogle Scholar
  6. 6.
    C.C. Wang, C.M. Lei, G.J. Wang, X.H. Sun, T. Li, S.G. Huang, H. Wang, Y.D. Li, J. Appl. Phys. 113, 094103 (2013)CrossRefGoogle Scholar
  7. 7.
    X. Wang, Q. Hu, L. Li, X. Lu, J. Appl. Phys. 112, 044106 (2012)CrossRefGoogle Scholar
  8. 8.
    Z. Wang, M. Cao, Z. Yao, Q. Zhang, Z. Song, W. Hu, Q. Xu, H. Hao, H. Liu, Z. Yu, J. Eur. Ceram. Soc. 34, 1755–1760 (2014)CrossRefGoogle Scholar
  9. 9.
    S.K. Mishra, R. Ranjan, D. Pandey, P. Ranson, R. Ouillon, J.-P. Pinan-Lucarre, P. Pruzan, J. Solid State Chem. 178, 2846–2857 (2005)CrossRefGoogle Scholar
  10. 10.
    M.E. Guzhva, V.V. Lemanov, P.A. Markovin, W. Kleemann 39, 618–624 (1997)Google Scholar
  11. 11.
    Z. Yu, C. Ang, Appl. Phys. Lett. 80, 643–645 (2002)CrossRefGoogle Scholar
  12. 12.
    A. Chen, Z. Yu, J. Scott, A. Loidl, R. Guo, A.S. Bhalla, L.E. Cross, J. Phys. Chem. Solids 61, 191–196 (2000)CrossRefGoogle Scholar
  13. 13.
    M. Savinov, V.A. Trepakov, P.P. Syrnikov, V. Železný, J. Pokorný, A. Dejneka, L. Jastrabík, P. Galinetto, J. Phys.: Condens. Matter. 20, 095221 (2008)Google Scholar
  14. 14.
    Z. Wang, M. Cao, Q. Zhang, H. Hao, Z. Yao, Z. Wang, Z. Song, Y. Zhang, W. Hu, H. Liu, S. Zhang, J. Am. Ceram. Soc. 98, 476–482 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Ullah, A.S. Shahrakid, A. Ullah, R. Khan, Ceram. Int. 45, 3634–3642 (2019)CrossRefGoogle Scholar
  16. 16.
    L. Fang, W. Dong, F. Zheng, M. Shen, J. Appl. Phys. 112, 034114 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Durán, E. Martínez, J.A. Díaz, J.M. Siqueiros, J. Appl. Phys. 97, 104109 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Chen, Y. Zhi, Appl. Phys. Lett. 74, 3044–3046 (1999)CrossRefGoogle Scholar
  19. 19.
    B. Ullah, W. Lei, X.-Q. Song, X.-H. Wang, W.-Z. Lu, J. Alloys Compd. 728, 623–630 (2017)CrossRefGoogle Scholar
  20. 20.
    R. Shannon, Acta Crystallogr., A 32, 751–767 (1976)CrossRefGoogle Scholar
  21. 21.
    B. Ullah, W. Lei, Y.-F. Yao, X.-C. Wang, X.-H. Wang, M. Ur–Rahman, W.-Z Lu, J. Alloys Compd. 763, 990–996 (2018)CrossRefGoogle Scholar
  22. 22.
    Z. Pan, J. Chen, X. Jiang, Z. Lin, L. Zhang, L. Fan, Y. Rong, L. Hu, H. Liu, Y. Ren, X. Kuang, X. Xing, Inorg. Chem. 56, 2589–2595 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Ullah, W. Lei, Q.-S. Cao, Z.-Y. Zou, X.-K. Lan, X.-H. Wang, W.-Z. Lu, J. Am. Ceram. Soc. 99, 3286–3292 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Tkach, T.M. Correia, A. Almeida, J. Agostinho Moreira, M.R. Chaves, O. Okhay, P.M. Vilarinho, I. Gregora, J. Petzelt, Acta Mater. 59, 5388–5397 (2011)CrossRefGoogle Scholar
  25. 25.
    R. Ranjan, R. Hackl, A. Chandra, E. Schmidbauer, D. Trots, H. Boysen, Phys. Rev. B 76, 224109 (2007)CrossRefGoogle Scholar
  26. 26.
    Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, X. Tan, J. Am. Ceram. Soc. 96, 2551–2555 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Petzelt, T. Ostapchuk, I. Gregora, P. Kuzel, J. Liu, Z. Shen, J. Phys.: Condens. Matter 19, 196222 (2007)Google Scholar
  28. 28.
    A. Escobedo Morales, E. Sánchez Mora, U. Pal, Rev. Mex. Fis. 53, 18–22 (2007)Google Scholar
  29. 29.
    B. Sawicki, E. Tomaszewicz, M. Piątkowska, T. Groń, H. Duda, K. Górny, Acta Phys. Pol. B. 129, 94–96 (2016)CrossRefGoogle Scholar
  30. 30.
    H.W. Eng, P.W. Barnes, B.M. Auer, P.M. Woodward, J. Solid State Chem. 175, 94–109 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Burhan Ullah
    • 1
    Email author
  • Muneeb Ur-Rahman
    • 1
  • Rajwali Khan
    • 2
    • 3
  • Zulfiqar
    • 2
    • 3
  1. 1.Department of PhysicsIslamia CollegePeshawarPakistan
  2. 2.Department of PhysicsZhejiang UniversityHangzhouChina
  3. 3.Department of PhysicsAbdul Wali Khan UniversityMardanPakistan

Personalised recommendations