The impedance, dielectric and piezoelectric properties of Tb4O7 and Tm2O3 doped KNN ceramics

  • Yuzhi Zhai
  • Yao Feng
  • Juan DuEmail author
  • Jing Xue
  • Juan Shen
  • Ying Lu
  • Tongyou Lu
  • Peng Fu
  • Wei LiEmail author
  • Jigong Hao
  • Zhijun Xu


Rare earth (RE) elements (Tb, Tm) doped K0.5Na0.5NbO3 (KNN) lead-free ceramics were fabricated using conventional solid-state reaction method. All samples with dominating orthorhombic phase are well developed. The effects of Tb and Tm on impedance, dielectric and ferroelectric properties are systematically studied. There are relaxation-like features of the ceramics after the doping of RE elements. Conduction processes were affected by defect, especially in KNN-Tb ceramics, in the higher temperature region. The doping of Tb and Tm increases density, remnant polarization and the piezoelectric constant of the KNN ceramics due to the effect of donor doping. The overall analysis has confirmed the significance of RE elements (Tb, Tm) doping in KNN and shows that it is a promising candidate as lead-free piezoelectric ceramics.



This work was supported by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2018MEM011, ZR201709250374, ZR2017MEM019 and ZR2016EMM02), the National Key R&D Program of China (No. 2016YFB0402701), the Key R & D project of Shandong Province (No. 2017GGX202008) and the Project of Shandong Province Higher Educational Science and Technology Program (No. J17KA005).


  1. 1.
    L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao, Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions. Appl. Phys. Lett. 103(12), 122905 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Tian, C. Hu, X. Meng, P. Tan, Z. Zhou, J. Li, B. Yang, Top-seeded solution growth and properties of K1 – xNaxNbO3, crystals. Cryst. Growth Des. 15(3), 1180–1185 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Zheng, J. Wang, X. Huo, R. Wang, S. Sang, S. Li, P. Zheng, W. Cao, Temperature dependence of dielectric and electromechanical properties of (K,Na)(Nb,Ta)O3 single crystal and corresponding domain structure evolution. J. Appl. Phys. 116(4), 044105 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Effect of mechanical activation on the structure and ferroelectric property of Na0.5K0.5NbO3. Mater. Res. Bull. 46(9), 1467–1472 (2011)CrossRefGoogle Scholar
  5. 5.
    L. Liu, Y. Huang, Y. Li, L. Fang, H. Dammak, H. Fan, M.P. Thi, Orthorhombic to tetragonal structural phase transition in Na0.5K0.5NbO3-based ceramics. Mater. Lett. 68(2), 300–302 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Zheng, R. Sahul, S. Zhang, W. Jiang, S. Li, W. Cao, Orientation dependence of piezoelectric properties and mechanical quality factors of 0.27Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.27PbTiO3:Mn single crystals. J. Appl. Phys. 114(10), 104105 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Tian, B. Yao, P. Tan, Z.X. Zhou, G. Shi, D.W. Gong, R. Zhang, Double-loop hysteresis in tetragonal KTa0.58Nb0.42O3 correlated to recoverable reorientations of the asymmetric polar domains. Appl. Phys. Lett. 106(10), 102903 (2015)CrossRefGoogle Scholar
  8. 8.
    L.J. Liu, D.P. Shi, M. Knapp, H. Ehrenberg, L. Fang, J. Chen, Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions. J. Appl. Phys. 116(18), 184104 (2014)CrossRefGoogle Scholar
  9. 9.
    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv. Mater. 30(8), 1705171 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Du, F. An, Z. Xu, R. Cheng, R. Chu, X. Yi, J. Hao, W. Li, Effects of BiFe0.5Ta0.5O3 addition on electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Ceram. Int. 42, 1943–1949 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Du, Z. Xu, B. Deng, R. Chu, X. Yi, Y. Zheng, Y. Li, Sintering and electrical properties of La-modified (Na0.52K0.45Li0.03)1–3xLax(Nb0.88Sb0.09Ta0.03)O3 lead-free ceramics. Ceram. Int. 40, 4319–4322 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)CrossRefGoogle Scholar
  13. 13.
    Y.J. Zhao, Y.Y. Ge, X.W. Zhang, Y.Z. Zhao, H.P. Zhou, J.B. Li, H.B. Jin, Comprehensive investigation of Er2O3doped (Li,K,Na)NbO3 ceramics rendering potential application in novel multifunctional devices. J. Alloys Compd. 683, 171–177 (2016)CrossRefGoogle Scholar
  14. 14.
    Q.W. Zhang, K. Chen, L.L. Wang, H.Q. Sun, X.S. Wang, X.H. Hao, A highly efficient, orang elight-emitting (K0.5Na0.5)NbO3:Sm3+/Zr4+lead-free piezoelectric material with superior water resistance behavior. J. Mater. Chem. C 3, 5275–5284 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.X. Li, X. Yao, X.S. Wang, Y.B. Hao, Studies of dielectric properties of rare earth (Dy, Tb, Eu) doped barium titanate sintered in pure nitrogen. Ceram. Int. 38, 29–32 (2012)CrossRefGoogle Scholar
  16. 16.
    H.Y. Chen, X.B. Yang, X.L. Cao, M. Zeng, Perparation, structure and properties of BaTi0.9Zr0.1O3:xTb4O7 ceramics. Chin. J. Rare Metals 31(5), 712–716 (2007)Google Scholar
  17. 17.
    J.L. Li, C.Y. Deng, R.R. Cui, Photoluminescence properties of CaBi2Ta2O9:RE3+(RE = Sm, Tb, and Tm) phosphors. Opt. Commun. 326, 6–9 (2014)CrossRefGoogle Scholar
  18. 18.
    F. Gao, G.J. Ding, H. Zhou, G.H. Wu, N. Qin, D.H. Bao, Bright up-conversion photoluminescence of Bi4 – xErxTi3O12 ferroelectric thin films. J. Electrochem. Soc. 158(5), G128–G131 (2011)CrossRefGoogle Scholar
  19. 19.
    L. Laijun, M. Knapp, H. Ehrenberg, L. Fang, Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi½Na½TiO3 system. J. Eur. Ceram. Soc. 37, 1387–1399 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Liu, D. Shi, L. Fan, J. Chen, G. Li, L. Fang, B. Elouadi, Ferroic properties of Fe-doped and Cu-doped K0.45Na0.49Li0.06NbO3 ceramics. J. Mater. Sci.: Mater. Electron. 26(9), 6592–6598 (2015)Google Scholar
  21. 21.
    J. Du, X. Yi, C. Ban, Z. Xu, P. Zhao, C. Wang, Piezoelectric properties and time stability of lead-free (Na0.52K0.44Li0.04)Nb1 – xySbxTayO3 ceramics. Ceram. Int. 39, 2135–2139 (2013)CrossRefGoogle Scholar
  22. 22.
    M. El-Husseini, P. Venet, G. Rojat, C. Joubert, Thermal simulation for geometric optimization of metallized polypropylene film capacitors. IEEE Trans. Ind. Appl. 38(3), 713–718 (2002)CrossRefGoogle Scholar
  23. 23.
    X. Wu, C.C. Fang, J.F. Lin, C.W. Liu, L.H. Luo, M. Lin, X.H. Zheng, C. Lin, Tetragonal Er3+-doped (K0.48Na0.48Li0.04)(Nb0.96Bi0.04)O3: lead-free ferroelectric transparent ceramics with electrical and optical multifunctional performances. Ceram. Int. 44(5), 4908–4914 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Du, D. Liu, F. Fang, D. Zhu, W. Zhou, S. Qu, Ceramics, Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free. J. Am. Ceram. Soc. 90(9), 2824–2829 (2007)Google Scholar
  25. 25.
    K. Funke, Jump relaxation in solid electrolytes. Solid State Chem. 22(2), 111–195 (1993)CrossRefGoogle Scholar
  26. 26.
    A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)CrossRefGoogle Scholar
  27. 27.
    R. Rizwana, T.R. Krishna, A.R. James, P. Sarah, Impedance spectroscopy of Na and Nd doped strontium bismuth titanate. Cryst. Res. Technol. 4(27), 699–706 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Ma, X.W. Cheng, J.G. Hao, W. Li, R.Q. Chu, Z.J. Xu, Dielectric and ferroelectric properties of Ta-modified Bi3.25La0.75Ti3O12 ceramics. Ceram. Int. 43(16) (2017) 13193–13198CrossRefGoogle Scholar
  29. 29.
    X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36(16), 3995–4001 (2016)CrossRefGoogle Scholar
  30. 30.
    H.L. Gong, X.H. Wang, S.P. Zhang, H. Wen, L.T. Li, Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs. J. Eur. Ceram. Soc. 34(7), 1733–1739 (2014)CrossRefGoogle Scholar
  31. 31.
    X.R. Zhang, G.C. Jiang, D.Q. Liu, B. Yang, W.W. Cao, Enhanced electric field induced strain in (1-x)((Bi0.5Na0.5)TiO3-Ba(Ti, Zr)O3)-xSrTiO3 ceramics. Ceram. Int. 44(11), 12869–12876 (2018)CrossRefGoogle Scholar
  32. 32.
    N.S. Zhao, H.Q. Fan, J.W. Ma, X.H. Ren, Y.G. Shi, Y.Y. Zhou, Large strain of temperature insensitive in (1–x)(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–xSr0.7La0.2TiO3 lead-free ceramics. Ceram. Int. 44(10), 11331–11339 (2018)CrossRefGoogle Scholar
  33. 33.
    Y.M. Zhang, S.L. Wang, C.F. Chen, N.Y. Zhang, A.D. Wang, Y. Zhu, F.X. Cai, Reduced hysteresis of KNNS-BNKZ piezoelectric ceramics through the control of sintering temperature. Ceram. Int. 44(11), 12435–12441 (2018)CrossRefGoogle Scholar
  34. 34.
    M.C. Ehmke, J. Glaum, M. Hoffman, J.E. Blendell, K.J. Bowman, In situ X-ray diffraction of biased ferroelastic switching in tetragonal lead-free (1–x)Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 piezoelectrics. J. Am. Ceram. Soc. 96(9), 2913–2920 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengChina
  2. 2.School of Environmental and Material EngineeringYantai UniversityYantaiChina

Personalised recommendations