Minimizing the TID effects due to gamma rays by using diamond layout for MOSFETs

  • Luís Eduardo SeixasJr.Email author
  • Odair Lellis Gonçalez
  • Rafael Galhardo Vaz
  • Antonio Carlos da Costa Telles
  • Saulo Finco
  • Salvador Pinillos Gimenez


This manuscript describes an experimental comparative study of effects of the total ionizing dose (TID) on the main electrical parameters and figures of merit of Metal–Oxide–Semiconductor Field Effect Transistors (MOSFETs) implemented with two different layout styles, i.e., the hexagonal gate shape (diamond MOSFET, DM) and its corresponding rectangular counterparts (Conventional MOSFET, CM), which they were irradiated with a low dose rate with gamma-rays (60Co-source), considering that both present the same gate areas (AG), channel widths (W), aspect ratios (W/L), and concerning two different bias conditions (OFF and ON states) during the irradiation procedure. The main results of this work show that, besides the diamond MOSFETs present a better electrical performance than those found in their Conventional MOSFETs counterparts, they are also capable of boosting their ionizing radiation tolerances (smaller variation of the threshold voltage, subthreshold slope and minimize IDS leakage, etc.). Furthermore, it was observed that the hexagonal gate shape with a α angle equal to 90° tends to be the best gate geometry for MOSFETs because it is capable of enhancing the TID tolerance, intrinsically, in relation to the CM counterparts, regarding gamma-rays source used in this study. Therefore, the diamond layout style with α angle of 90° can be considered an alternative Hardness-By-Design layout technique which is able to manufacture planar MOSFETs low-cost, high electrical performance, and high ionizing tolerance to be applied in the space, medical, and nuclear CMOS ICs applications.



The authors would like to thank CNPq, FAPESP, CAPES and FINEP (CITAR) for the financial support and the Ionizing Radiation Laboratory (LRI) of the Institute of Advanced Studies (IEAv) for the infrastructure and test facilities. This study was supported by Financiadora de Estudos e Projetos (01.12.0224.00).


  1. 1.
    H.L. Hughes, J.M. Benedetto, Radiation effects and hardening of MOS technology: devices and circuits. IEEE Trans. Nuclear Sci 50(3), 500–521 (2003)CrossRefGoogle Scholar
  2. 2.
    J.R. Schwank et al., Radiation hardness assurance testing of microelectronic devices and integrated circuits: radiation environments, physical mechanisms, and foundations for hardness assurance. IEEE Trans. Nuclear Sci. 60(3), 2074–2100 (2013)CrossRefGoogle Scholar
  3. 3.
    K.M. Schlesier, C.W. Benyon, Processing effects on steam oxide hardness. IEEE Trans. Nuclear Sci. NS-23, 1599–1603 (1976)CrossRefGoogle Scholar
  4. 4.
    F. Faccio, H.J. Barnaby, X.J. Chen, D.M. Fleetwood, L. Gonella, M. McLain, R.D. Schrimpf, Total ionizing dose effects in shallow trench isolation oxides. Microelectron. Reliab. 48, 1000–1007 (2008)CrossRefGoogle Scholar
  5. 5.
    H.J. Barnaby, Total-ionization-dose effects in modern CMOS technologies. IEEE Trans. Nuclear Sci. 53(6), 3103–3121 (2006)CrossRefGoogle Scholar
  6. 6.
    H.J. Barnaby, Modeling ionizing radiation effects in solid state materials and CMOS devices. IEEE Trans. Circ. Syst. 56(8), 1870–1883 (2009)Google Scholar
  7. 7.
    E.S.A. Handbook, Techniques for radiation effects mitigation in ASICs and FPGAs. ESA ESTEC. Data systems division microelectronics. Section Noordwijk, Netherlands, (2016). Accessed 1 Sept 2016
  8. 8.
    W.R. Dawes, G.F. Derbenwick, B.L. Gregory, Process technology for radiation-hardened CMOS integrated circuits. IEEE J. Solid-State Circ. 11, 459–465 (1976)CrossRefGoogle Scholar
  9. 9.
    R.C. Lacoe et al., Application of hardness-by-design methodology to radiation-tolerant ASIC technologies. IEEE Trans. Nuclear Sci. 47, 2334–2341 (2000)CrossRefGoogle Scholar
  10. 10.
    J. Jiang, W. Shu, K.-S. Chong, Total Ionizing Dose (TID) effects on finger transistors in a 65 nm CMOS process. In: 2016 IEEE international symposium on circuits and systems (ISCAS), p. 5–8, Montreal, Canada; (2016)Google Scholar
  11. 11.
    J. Ramos-Martos et al., Radiation characterization of the Austria-microsystems 0.35 m CMOS technology. In: 2011 12th European conference on radiation and its effects on components and systems, Sevilla, Spain; (2011)Google Scholar
  12. 12.
    V. Ferlet, Design hardening methodologies for ASICs, in radiation effects on embedded systems (Springer, Dordrecht, 2007)Google Scholar
  13. 13.
    E. Chatzikyriakou, K. Morgan, C.H.K. de Groot, Total ionizing dose hardened and mitigation strategies in deep submicrometer CMOS and beyond. IEEE Trans. Electron Devices 65, 808–819 (2018)CrossRefGoogle Scholar
  14. 14.
    R.N. Nowlin, D.R. Alexander, A new total-dose-induced parasitic effect in enclosed-geometry transistors. IEEE Trans. Nuclear Sci. 52(6), 2495 (2005)CrossRefGoogle Scholar
  15. 15.
    F. Faccio et al., Radiation issues in the new generation of high energy physics experiments. Int. J. High Speed Electron. Syst. 14(2), 379–399 (2004)CrossRefGoogle Scholar
  16. 16.
    M.S. Lee, H.C. Lee, Dummy gate-assisted n-MOSFET layout for a radiation-tolerant integrated circuit. IEEE Trans. Nuclear Sci. 60(4), 3084–3091 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Anelli et al., Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects, IEEE Trans. Nuclear Sci. 46(6), 1690–1696 (1999)CrossRefGoogle Scholar
  18. 18.
    A. Giraldo, A. Paccagnella, A. Minzoni, Aspect ratio calculation in n-channel MOSFET’s with a gate-enclosed layout, Solid State Electron. 44, 981–989 (2000)CrossRefGoogle Scholar
  19. 19.
    M. Mclain et al., Modeling dogbone gate geometry n-channel MOSFETs. In: 8th European conference on radiation and its effects on components and systems, RADECS 2005. Cap d’Agde, France; (2005)Google Scholar
  20. 20.
    S.P. Gimenez, M.O.S.F.E.T. Diamond, An innovative layout to improve performance of ICs. Solid-State Electron. 54, 1690–1696 (2010)CrossRefGoogle Scholar
  21. 21.
    S.P. Gimenez, R.D. Leoni, C. Renaux, D. Flandre, Using the diamond layout style to boost MOSFET frequency response of analog IC. Electron. Lett. 50, 398–400 (2014)Google Scholar
  22. 22.
    S.P. Gimenez, V.V. Peruzzi, C. Renaux, D. Flandre, A compact diamond MOSFET model accounting for the PAMDLE applicable down the 150-nm node. Electron. Lett. 50, 1618–1620 (2014)CrossRefGoogle Scholar
  23. 23.
    L.E. Seixas et al., Study of proton radiation effects among diamond and rectangular gate MOSFET layouts. IOP Mater. Res. Exp. 4(1), 015901 (2017)CrossRefGoogle Scholar
  24. 24.
    S.P. Gimenez, Layout Techniques for MOSFETs. Synthesis Lectures on Emerging Engineering Technologies, vol. 2, no. 6 (Morgan & Claypool, 2016), pp. 1–81.
  25. 25.
    L.E. Seixas et al, Improving MOSFETs’ TID tolerance through diamond layout style. IEEE Trans. Device Mater. Reliabil. 17, 593–595 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Fino, D. Flandre, S.P. Gimenez, Boosting the total ionizing dose tolerance of digital switches by using OCTO SOI MOSFET. IOP Semicond. Sci. Technol. 30, 105024 (2016)CrossRefGoogle Scholar
  27. 27.
    H.S. Wong, M.H. White, T.J. Krutsick, R.V. Booth, Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET’s. Solid-State Electron. 30, 953 (1987)CrossRefGoogle Scholar
  28. 28.
    D. Wolpert, P. Ampadu, Managing Temperature Effects in Nanoscale Adaptive Systems (Springer, New York, 2012)CrossRefGoogle Scholar
  29. 29.
    O.L. Gonçalez et al, Qualification of electronic components with respect to the cosmic radiation tolerance for space applications. An. WERICE, 2012. São José dos Campos, 1, 51–56 (2012). Accessed 5 May 2018
  30. 30.
    MOSIS, ON Semiconductor 0.35 Micron. (2017)
  31. 31.
    R.D. Schrimpf, R. Velazco, Radiation effects in microelectronics, in Radiation Effects on Embedded Systems (Holland, Springer, 2007), pp. 11–29Google Scholar
  32. 32.
    M. Ceschia, A. Paccagnella, Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides. IEEE Trans. Nuclear Sci. NS-6, 45, 2375–2382 (1998)CrossRefGoogle Scholar
  33. 33.
    D. Lili et al, Study of radiation-induced leakage current between adjacent devices in a CMOS integrated circuit. J Semicond. NS-6 33, 1–6 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Tecnologia da Informação Renato Archer CampinasCampinasBrazil
  2. 2.Instituto de Estudos Avançados - IEAv/DCTAS. José dos CamposBrazil
  3. 3.Centro Universitário FEIS. Bernardo do CampoBrazil

Personalised recommendations