Conversion mechanism of conductivity and properties of nitrogen implanted ZnO single crystals induced by post-annealing

  • Zheng Huang
  • Haibo RuanEmail author
  • Hong Zhang
  • Dongping Shi
  • Wanjun Li
  • Guoping Qin
  • Fang WuEmail author
  • Liang Fang
  • Chunyang Kong


In this paper, the conversion mechanism of conductivity and properties of nitrogen (70 keV, 1 × 1016 cm−2) implanted ZnO single crystals induced by post-annealing in a temperature ranging from 500 °C to 800 °C have been investigated by Hall, Raman, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and low temperature photoluminescence (PL) measurements. The results indicate that the sample converts to p-type conductivity as annealed at 650 °C. For the as-implanted sample, different type of nitrogen (N) local states are detected, including substitutional N atom and N2 molecules on O site [No and (N2)o], N–O, N–H, and N–C complexes. However, their thermal stabilities display significant difference upon thermal annealing. Differing from the initial ZnO bulk, the low-temperature PL spectrum of the post-annealed N implanted ZnO sample consists of two dominant peaks located at 3.105 eV and 3.220 eV, respectively. The former is attributed to radiative electron transition from the conduction band to the Zn vacancy (VZn) acceptor level, and the latter is assigned to recombination of the donor–acceptor pair (DAP). Our results suggest that the VZn together with the No acceptors are responsible for p-type conductivity of N doped ZnO.



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51502030 and 51472038), SKLMT-ZZKT-2017M15, the Nature Science Foundation of Chongqing (Grant Nos. cstc2017jcyjAX0393, cstc2018jcyjAX0450, cstc2015jcyjA50035 and cstc2015jcyjA1660), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJ1501112, KJKJQN201800102), the Fundamental Research Funds for the Central Universities (Grant Nos. 2018CDJDWL0011, 106112017CDJQJ328839, 106112016CDJZR288805 and 106112015CDJXY300002), the China Post-doctoral Science Foundation (Grant No. 2016M600726), the opening project of Chongqing Key Laboratory of Micro /Nano Materials Engineering and Technology (Grant No. KFJJ1301) and the Sharing Fund of Large-scale Equipment of Chongqing University (Grant Nos. 201612150094, 201712150005, 201712150006 and 201712150010).


  1. 1.
    K. Tang, S.-L. Gu, J.-D. Ye, S.-M. Zhu, R. Zhang, Y.-D. Zheng, Recent progress of the native defects and p-type doping of zinc oxide. Chin. Phys. B 26, 27–49 (2017)Google Scholar
  2. 2.
    R. Park, M. Troffer, C. Rouleau, J. DePuydt, M. Haase, P-type ZnSe by nitrogen atom beam doping during molecular beam epitaxial growth. Appl. Phys. Lett. 57, 2127–2129 (1990)CrossRefGoogle Scholar
  3. 3.
    X.-R. Nie, B. Zhang, J.-Z. Wang, L.-Q. Shi, Z.-F. Di, Q.-L. Guo, Room-temperature ferromagnetism in p-type nitrogen-doped ZnO films. Mater. Lett. 161, 355–359 (2015)CrossRefGoogle Scholar
  4. 4.
    K. Tang, R. Gu, S.-M. Zhu, Z.-H. Xu, J.-D. Ye, S.-L. Gu, Thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films. Opt. Mater. Exp. 7, 593–605 (2017)CrossRefGoogle Scholar
  5. 5.
    E. Guziewicz, E. Przezdziecka, D. Snigurenko, D. Jarosz, B.S. Witkowski, P. Dluzewski, W. Paszkowicz, Abundant acceptor emission from nitrogen-doped ZnO films prepared by atomic layer deposition under oxygen-rich conditions. ACS Appl. Mater. Interfaces 9, 26143–26150 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Tang, S.-M. Zhu, Z.-H. Xu, J.-D. Ye, S.-L. Gu, Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films. J. Alloys Compd. 696, 590–594 (2017)CrossRefGoogle Scholar
  7. 7.
    Y.-P. Jin, N.-N. Zhang, B. Zhang, Fabrication of p-type ZnO:N films by oxidizing Zn3N2 films in oxygen plasma at low temperature. Materials 10, 236 (2017)CrossRefGoogle Scholar
  8. 8.
    S.H. Park, T. Minegishi, M. Ito, J.S. Park, I.H. Im, J.H. Chang, D.C. Oh, H.J. Ko, M.W. Cho, T. Yao, The effect of growth temperature on nitrogen incorporation into ZnO film grown on Al2O3 substrate. J. Cryst. Growth 311, 466–469 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, C.-Y. Kong, W.-J. Li, G.-P. Qin, H.-B. Ruan, M. Tan, The formation mechanism and stability of p-type N-doped Zn-rich ZnO films. J. Mater. Sci.: Mater. Electron. 27, 5251–5258 (2016)Google Scholar
  10. 10.
    H.-T. Wang, B.-S. Kang, J.-J. Chen, T. Anderson, S. Jang, F. Ren, Band-edge electroluminescence from N+-implanted bulk ZnO. Appl. Phys. Lett. 88, 102107–102109 (2006)CrossRefGoogle Scholar
  11. 11.
    M.A. Myers, M.T. Myers, M.J. General, J.H. Lee, L. Shao, H. Wang, P-type ZnO thin films achieved by N+ ion implantation through dynamic annealing process. Appl. Phys. Lett. 101, 112101 (2012)CrossRefGoogle Scholar
  12. 12.
    J.E. Stehr, X.-J. Wang, S. Filippov, S.J. Pearton, I.G. Ivanov, W.-M. Chen, I.A. Buyanova, Defects in N, O and N, Zn implanted ZnO bulk crystals. J. Appl. Phys. 113, 293 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Gotz, N.M. Johnson, J. Walker, D.P. Bour, Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 68, 667–669 (1996)CrossRefGoogle Scholar
  14. 14.
    M. Madkour, Y.K. Abdel-Monem, F.A. Sagheer, Controlled synthesis of NiO and Co3O4 nanoparticles from different coordinated precursors: The impact of precursor’s geometry on the nanoparticles characteristics. Ind. Eng. Chem. Res. 55, 12733–12741 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.K. Abdel-Monem, S.M. Emam, H.M.Y. Okda, Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors. J. Mater. Sci.: Mater. Electron. 28, 2929–2934 (2017)Google Scholar
  16. 16.
    Z.-Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X.-L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, Production and recovery of defects in phosphorus-implanted ZnO. J. Appl. Phys. 97, 399 (2005)Google Scholar
  17. 17.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 80, 1909–1911 (2002)CrossRefGoogle Scholar
  18. 18.
    J.-B. Wang, H.-M. Zhong, Z.-F. Li, W. Lu, Raman study of N+ -implanted ZnO. Appl. Phys. Lett. 88, 811 (2006)Google Scholar
  19. 19.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 80, 1909–1911 (2002)CrossRefGoogle Scholar
  20. 20.
    C. [20] Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974–1976 (2003)CrossRefGoogle Scholar
  21. 21.
    F. Friedrich, M.A. Gluba, N.H. Nickel, Identification of nitrogen and zinc related vibrational modes in ZnO. Appl. Phys. Lett. 95, 141903 (2009)CrossRefGoogle Scholar
  22. 22.
    M.A. Gluba, N.H. Nickel, N. Karpensky, Interstitial zinc clusters in zinc oxide. Phys. Rev. B 88, 142–146 (2013)CrossRefGoogle Scholar
  23. 23.
    X.-H. Li, H.-Y. Xu, X.-T. Zhang, Y.-C. Liu, J.-W. Sun, Y.-M. Lu, Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent X-ray photoelectron spectroscopy. Appl. Phys. Lett. 95, 191903 (2009)CrossRefGoogle Scholar
  24. 24.
    N. Jiang, D.G. Georgiev, A.H. Jayatissa, R.W. Collins, J. Chen, E. Mccullen, Zinc nitride films prepared by reactive rf magnetron sputtering of zinc in nitrogen containing atmosphere. J. Phys. D 45, 135101–135109 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Futsuhara, K. Yoshioka, O. Takai, Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274–281 (1998)CrossRefGoogle Scholar
  26. 26.
    Y. Yan, S. Zhang, S. Pantelides, Control of doping by impurity chemical potentials: predictions for p-type ZnO. Phys. Rev. Lett. 86, 5723–5726 (2001)CrossRefGoogle Scholar
  27. 27.
    L. Li, C. Shan, B. Li, B. Yao, J. Zhang, D. Zhao, Z. Zhang, D. Shen, X. Fan, Y. Lu, The compensation source in nitrogen doped ZnO. J. Phys. D 41, 4036–4042 (2008)Google Scholar
  28. 28.
    S. Limpijumnong, X. Li, S.-H. Wei, S. Zhang, Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO. Appl. Phys. Lett. 86, 932 (2005)Google Scholar
  29. 29.
    P. Zhang, C. Kong, W. Li, G. Qin, Q. Xu, H. Zhang, H. Ruan, Y. Cui, L. Fang, The origin of the ∼274 cm – 1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films. Appl. Surf. Sci. 327, 154–158 (2015)CrossRefGoogle Scholar
  30. 30.
    W.-J. Li, C.-Y. Kong, G.-P. Qin, H.-B. Ruan, L. Fang, p-Type conductivity and stability of Ag–N codoped ZnO thin films. J. Alloys Compd. 609, 173–177 (2014)CrossRefGoogle Scholar
  31. 31.
    X.-M. Dai, S.-J. Xu, C.-C. Lin, G. Brauer, W. Anwand, W. Korupa, Emission bans of nitrogen-implantatio induced luminescent centers in ZnO crystals: Experiment and theory. J. Appl. Phys. 112, 046102–046102 (2012)CrossRefGoogle Scholar
  32. 32.
    Z.-Y. Xiao, Y.-C. Liu, J.-Y. Zhang, D.-X. Zhao, Y.-M. Lu, D.-Z. Shen, X.-W. Fan, Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition. Semicond. Sci. Technol. 20, 796–800 (2005)CrossRefGoogle Scholar
  33. 33.
    Z.-R. Yao, S.-L. Gu, K. Tang, J.-D. Ye, Y. Zhang, S.-M. Zhu, Y.-D. Zheng, Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods. J. Lumin. 161, 293–299 (2015)CrossRefGoogle Scholar
  34. 34.
    K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, S. Gu, Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films. J. Alloys Compd. 699, 484–488 (2017)CrossRefGoogle Scholar
  35. 35.
    A. Zeuner, H. Alves, D.M. Hofmann, B.K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, M. Dworzak, Optical Properties of the Nitrogen Acceptor in Epitaxial ZnO. Phys. Status Solidi (b) 234, R7–R9 (2002)CrossRefGoogle Scholar
  36. 36.
    J.-C. Li, B. Yao, Y.-F. Li, Z.-H. Ding, Y. Xu, L.-G. Zhang, H.-F. Zhao, D.-Z. Shen, Conversion mechanism of conductivity of phosphorus-doped ZnO films induced by post-annealing. J. Appl. Phys. 113, 193105 (2013)CrossRefGoogle Scholar
  37. 37.
    Y.-R. Sui, B. Yao, Z. Hua, G.-Z. Xing, X.-M. Huang, T. Yang, L.-L. Gao, T.-T. Zhao, H.-L. Pan, H. Zhu, W.-W. Liu, T. Wu, Fabrication and properties of B–N codoped p-type ZnO thin films. J. Phys. D 42, 065101 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Kennedy, D.A. Carder, A. Markwitz, R.J. Reeves, Properties of nitrogen implanted and electron beam annealed bulk ZnO. J. Appl. Phys. 107, 34 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Micro/Nano Material Engineering and TechnologyChongqing University of Arts and SciencesChongqingPeople’s Republic of China
  2. 2.State Key Laboratory of Mechanical Transmission, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of PhysicsChongqing UniversityChongqingPeople’s Republic of China
  3. 3.Key Laboratory of Optoelectronic Functional MaterialsChongqing Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations