Growth of ZnO nanoparticles prepared from cost effective laboratory grade ZnO powder and their application in UV photocatalytic dye decomposition

  • Rajashree Sahoo
  • Atal Mundamajhi
  • Susanta Kumar DasEmail author


ZnO nanoparticles were prepared by mechanical grinding of laboratory grade ZnO powder. These nanoparticles were characterised by using X-ray diffraction analysis, transmission electron microscopy (TEM), photoluminescence and diffuse reflectance spectroscopy. From TEM study it reveals that the particles mostly show one dimensional morphology. The average length and diameter of these nanoparticles are 300 nm and 59.34 nm respectively. Studies on UV photocatalysis behaviour of these nanoparticles were done through their use in methylene blue dye decomposition. Particularly, the reaction kinetics and reaction rate are estimated by monitoring the dye decomposition activity with respect to UV exposure time. The kinetic is found to be pseudo-first order with the reaction rate constant (kinetic constant) 0.18 min−1. In the comparative study it has been demonstrated that these ZnO nanoparticles can show three times higher dye degradation activity with respect to benchmark commercial nanoparticle P25. From the photocatalysis studies with scavengers like Isopropyl alcohol and ethylenediaminetetraacetate it is demonstrated that hole (h+) and hydroxyl radical (·OH) have a vital role in the dye decomposition activity. The used ZnO powders are of extremely low cost, so this material can be found to be a better choice for photocatalytic dye decomposition applications.



The Institute of Physics (IOP), Bhubaneswar is acknowledged for providing the facility for the TEM characterization of the ZnO nanoparticles.


  1. 1.
    M.A. Ali, M.R. Idris, M.E. Quayum, J. Nanostruct. Chem. 3, 1–6 (2013). CrossRefGoogle Scholar
  2. 2.
    M. Nirmala, M.G. Nair, K. Rekha, A. Anukaliani, S.K. Samdarshi, R.G. Nair, Afr. J. Appl. 2, 161–166 (2010)Google Scholar
  3. 3.
    K.G. Chandrappa, T.V. Venkatesha, Nano-Micro Lett. 4, 14–24 (2012). CrossRefGoogle Scholar
  4. 4.
    D. Chen, S. Ai, Z. Liang, F. Wei, Ceram. Int. 42, 3692–3696 (2015). CrossRefGoogle Scholar
  5. 5.
    S.S.M. Hassan, H.R. W I M El .Azab, M.S.M. .Ali, .Mansour, Adv. Nat. Sci. 6, 045012 (2015). Google Scholar
  6. 6.
    M.B. K.Namratha, K. Nayan, .Byrappa, Mater. Res. Innov. 15, 36–48 (2013). CrossRefGoogle Scholar
  7. 7.
    M.A. Behnajady, N. Modirshahla, E. Ghazalian, Dig. J Nanomater. Biostruct. 6, 467–474 (2011)Google Scholar
  8. 8.
    S. Sood, A. Kumar, N. Sharma, Chem. Sel. 1, 6925–6932 (2016). Google Scholar
  9. 9.
    A. Balcha, O.P. Yadav, T. Dey, Environ. Sci. Pollut. Res. 23, 25485–25493 (2016). CrossRefGoogle Scholar
  10. 10.
    N.K. Singh, S. Saha, A. Pal, Desalin. Water Treat. 56, 1–12 (2015). CrossRefGoogle Scholar
  11. 11.
    A.H. Abdullah, Z. Zainal, M.Z. Hussein, Int. J. Chem. 2, 180–193 (2010)Google Scholar
  12. 12.
    Y.L. Chan, S.Y. Pung, S. Sreekantan, Asean Eng. J. 3, 46–54 (2013)Google Scholar
  13. 13.
    R. Comparelli, P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Mascolo, G. Lovecchio, Water Sci. Technol. 49, 183–188 (2004). CrossRefGoogle Scholar
  14. 14.
    J. Nishio, M. Tokumura, H.T. Znad, Y. Kawase, J. Hazard. Mater. 138, 106–115 (2006).
  15. 15.
    N.K. Singh, S. Saha, A. Pal, Desalin. Water Treat. 53, 1–14 (2013). CrossRefGoogle Scholar
  16. 16.
    D.R. Shinde, P.S. Tambade, M.G. Chaskar, K.M. Gadave, Drink. Water Eng. Sci. 10, 109–117 (2017). CrossRefGoogle Scholar
  17. 17.
    L.M. Ahmed, F.T. Tawfeeq, M.H.A. Al-Ameer, K.A. Al-Hussein, A.R. Athaab, J. Geosci. Environ. Prot. 4, 34–44 (2016).
  18. 18.
    A. Salih, S. Hadi, A. Jawad, A. Sadoon, Y. Fahim, J. Babylon Univ./Appl. Sci. 22, 2508–2515 (2014)Google Scholar
  19. 19.
    S. Labib, Mater. Sci. Eng. Technol. 47, 19–28 (2016). Google Scholar
  20. 20.
    N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khataee, M.H. Rasoulifard, Int. J. Nucl. Quant. Eng. 1, 62–67 (2007)Google Scholar
  21. 21.
    T.K. Tan, P.S. Khiew, W.S. Chiu, S. Radiman, R. Abd-Shukor, N.M. Huang, H.N. Lim, Adv. Mater. Res. 895, 547–557 (2014). CrossRefGoogle Scholar
  22. 22.
    A. Shafaei, M. Nikazar, M. Arami, Desalination 252, 8–16 (2010). CrossRefGoogle Scholar
  23. 23.
    P. Bansal, D. Sud, Desalination 267, 244–249 (2011). CrossRefGoogle Scholar
  24. 24.
    D.W. A.AIsmail, Bahnemann, J. Phys. Chem. C 115, 5784–5791 (2011). CrossRefGoogle Scholar
  25. 25.
    K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 21, 2233–2239 (2009). CrossRefGoogle Scholar
  26. 26.
    J.Han, Y.Liu, N..Singhal, L.Wang, W., Gao, Chem. Eng. J. 213, 150–162 (2012). CrossRefGoogle Scholar
  27. 27.
    H. Li, S. Yin, Y. Wang, T. Sato, Appl. Catal. B 132, 487–492 (2013). CrossRefGoogle Scholar
  28. 28.
    T. Liu, L. Wang, X. Lu, J. Fan, X. .Cai, B. Gao, R. Miao, J. Wang, Y. Lv, RSC Adv. 7, 12292–12300 (2017). CrossRefGoogle Scholar
  29. 29.
    R.K. Chava, M.Kang, J. Alloys Compd. 692, 67–76 (2017). CrossRefGoogle Scholar
  30. 30.
    S.B. K.Mahmood, H.J. Park, Sung, J. Mater. Chem. C. 1, 3138–3149 (2013). CrossRefGoogle Scholar
  31. 31.
    Z. X.Chen.D. Wu.Z.Gao Liu, NanoScale Res. Let 12, 143 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, School of Applied SciencesKIIT Deemed to be UniversityBhubaneswar, OdishaIndia

Personalised recommendations