The properties of the earth abundant Cu2SnS3 thin film prepared by spray pyrolysis and rapid thermal annealing route

  • Qinmiao ChenEmail author
  • Zhen Jia
  • Hongcun Yuan
  • Wei Zhu
  • Yi Ni
  • Xifang Zhu
  • Xiaoming DouEmail author


Ternary compound Cu2SnS3 (CTS) was fabricated by simple, low cost and high efficient spray pyrolysis and rapid thermal annealing route. The influences of annealing temperature and annealing duration on the properties of the prepared CTS thin film were investigated in detail. X-ray diffraction spectrometer, Scanning Electron Microscope, UV–Vis–IR spectrophotometer and I–V test system were employed for the analysis of the structural, morphological, optical and photoelectric properties of the prepared CTS thin film, respectively. The characterization results show that the CTS thin film prepared under the optimal annealing condition of 500 °C and 15 min presents as tetragonal structure with preferential (1,1,2), bandgap value of 1.44 eV, crystal grain size of around 80 nm and photoelectric conversion efficiency as high as 1.24%.



The project was supported by the National Natural Science Foundation (Grant No. 11604097), the Fund of East China University of Science and Technology (Grant No. YK0142119) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20141167).


  1. 1.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 10(8), 583–586 (2016)CrossRefGoogle Scholar
  2. 2.
    D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn (Se,S)4 solar cell. Prog. Photovolt Res. Appl. 20, 6–11 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol. Cells 93, 583–587 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Nagoya, R. Asahi, R. Wahl, G. Kresse, Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material. Phys. Rev. B 81, 113202 (2010)CrossRefGoogle Scholar
  5. 5.
    N. Kitagawa, S. Ito, D.C. Nguyen, H. Nishino, Copper zinc sulfur compound solar cells fabricated by spray pyrolysis deposition for solar cells. Nat. Resour. 4, 142 (2013)Google Scholar
  6. 6.
    D. Tiwari, T.K. Chaudhuri, T. Shripathi, U. Deshpande, R. Rawat, Non-toxic, earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from single metal-organic precursor solution. Sol. Energy Mater. Sol. Cells 113, 165–170 (2013)CrossRefGoogle Scholar
  7. 7.
    X. Liu, X. Wang, M.T. Swihart, Composition-dependent crystal phase optical properties, and self-assembly of Cu–Sn–S colloidal nanocrystals. Chem. Mater. 27, 1342–1348 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Kolny-Olesiak, H. Weller, Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 5, 12221–12237 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Bouaziz, M. Amlouk, S. Belgacem, Structrual and optical properties of Cu2SnS3 sprayed thin film. Thin Solid Films 517, 2527–2530 (2009)CrossRefGoogle Scholar
  10. 10.
    D.M. Berg, R. Djemour, L. Gutay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films 520, 6291–6294 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Li, C. Xue, Y. Wang, G. Jiang, W. Liu, C. Zhu, Cu2SnS3 solar cells fabricated by chemical bath deposition-annealing of SnS/Cu stacked layers. Sol. Energy Mater. Sol. Cells 144, 281–288 (2016)CrossRefGoogle Scholar
  12. 12.
    D. Avellaneda, M.T.S. Nair, P.K. Nair, Cu2SnS3 and Cu4SnS4 thin film via chemical depostion for photovoltaic application. J. Electrochem. Soc. 157, D346–D352 (2010)CrossRefGoogle Scholar
  13. 13.
    Z. Su, K. Sun, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, Fabrication of ternary Cu-Sn-S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method. J. Mater. Chem. 22, 16346–16352 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Fiechter, M. Martinez, G. Schmidt, W. Henrion, Y. Tomm, Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S. J. Phys. Chem. Solids 64, 1859–1862 (2003)CrossRefGoogle Scholar
  15. 15.
    A.C. Lokhande, R.B.V. Chalapathy, M. He, E. Jo, M. Gang, S.A. Pawar, C.D. Lokhande, J.H. Kim, Development of Cu2SnS3 (CTS) thin film solarcells by physical techniques: a status review. Sol. Energy Mater. Sol. Cells 153, 84–107 (2016)CrossRefGoogle Scholar
  16. 16.
    P.A. Fernandes, P.M.P. Salomé, A.F.D. Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D 43, 215403 (2010)CrossRefGoogle Scholar
  17. 17.
    N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu–Sn precursors for solar cells. Phys. Status Solidi C 10, 1086–1092 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Chino, J. Koike, S. Eguchi, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, Preparation of Cu2SnS3 thin films by sulfurization of Cu/Sn stacked precursors. Jpn. J. Appl. Phys. 51(10S), 10NC35 (2012)CrossRefGoogle Scholar
  19. 19.
    P. Fernandes, P. Salomé, A. da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D 43, 215403 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Chantana, K. Suzuki, T. Minemoto, Introduction of Na into Cu2SnS3 thin film for improvement of its photovoltaic performances. Sol. Energy Mater. Sol. Cells 168, 207–213 (2017)CrossRefGoogle Scholar
  21. 21.
    T.A. Kuku, O.A. Fakolujo, International Society for Optics and Photonics (1986), pp. 321–325Google Scholar
  22. 22.
    D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films 520, 6291–6294 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Adelifard, M.M.B. Mohagheghi, H. Eshghi, Preparation and characterization of Cu2SnS3 ternary semiconductor nanostructures via the spray pyrolysis technique for photovoltaic applications. Phys. Scr. 85, 035603 (2012)CrossRefGoogle Scholar
  24. 24.
    G. Sunny, T. Thomas, D.R. Deepu, C.S. Kartha, K.P. Vijayakumar, Thin film solar cell using earth abundant Cu2SnS3 (CTS) fabricated through spray pyrolysis: influence of precursors. Optik 144, 263–270 (2017)CrossRefGoogle Scholar
  25. 25.
    Q. Chen, X. Dou, Z. Li, S. Cheng, S. Zhuang, Printed ethyl cellulose/CuInSe2 composite light absorber layer and its photovoltaic effect. J. Phys. D 44(45), 455401 (2011)CrossRefGoogle Scholar
  26. 26.
    Q. Chen, X. Dou, Y. Ni, S. Cheng, S. Zhuang, Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by p–n junction interface modification. J. Colloid Interface Sci. 376(1), 327–330 (2012)CrossRefGoogle Scholar
  27. 27.
    B. Patel, R.K. Pati, I. Mukhopadhyay, A. Ray, Effect of vacuum and sulphur annealing on the structural properties of spray deposited Cu2SnS3 thin films. Vacuum 158, 263–270 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Yamaguchi, K.I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, K. Araki, Novel materials for high-efficiency III–V multi-junction solar cells. Sol. Energy 82(2), 173–180 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Bouaziz, M. Amlouk, S. Belgacem, Structural and optical properties of Cu2SnS3 sprayed thin films. Thin Solid Films 517(7), 2527–2530 (2009)CrossRefGoogle Scholar
  30. 30.
    K. Gao, L.G. Xiao, Y.Y. Kan, B.L. Yang, J.B. Peng, Y. Cao, F. Liu, T.P. Russellc, X.B. Peng, Solution-processed bulk heterojunction solar cells based on porphyrin small molecules with very low energy losses comparable to perovskite solar cells and high quantum efficiencies. J. Mater. Chem. C 4, 3843–3850 (2016)CrossRefGoogle Scholar
  31. 31.
    T.X. Liang, L.G. Xiao, C. Liu, K. Gao, H.M. Qin, Y. Cao, X.B. Peng, Porphyrin small molecules containing furan- and selenophene-substituted diketopyrrolopyrrole for bulk heterojunction organic solar cells. Org. Electron. 29, 127–134 (2016)CrossRefGoogle Scholar
  32. 32.
    K. Gao, Z.L. Zhu, B. Xu, S.B. Jo, Y.Y. Kan, X.B. Peng, A.K.Y. Jen, Highly efficient porphyrin-based OPV/Perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29, 1703980 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceEast China University of Science and TechnologyShanghaiChina
  2. 2.School of Optoelectronic EngineeringChangzhou Institute of TechnologyChangzhouChina
  3. 3.Department of Applied Physics, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations