Advertisement

Comparative studies on electrochemical energy storage of NiFe-S nanoflake and NiFe-OH towards aqueous supercapacitor

  • Mansoreh Naseri
  • Morteza MoradiEmail author
  • Shaaker Hajati
  • Juan Pedro Espinos
  • Mohammad Ali Kiani
Article
  • 65 Downloads

Abstract

In this study, electrochemical energy storage performances of an efficient Ni–Fe sulfide and hydroxide supported on porous nickel foam are compared. X-ray diffraction (XRD), X-rayphotoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometer (EDS) results confirmed the formation of Ni–Fe–S and Ni–Fe–OH electrodes. In addition, Brunauer–Emmett Teller (BET) was used to determine the specific surface area of the prepared materials. Moreover, the morphologies were observed by scanning electron microscopy (SEM). The brilliant characteristics of Ni–Fe–S could be attributed to transport acceleration in electrolyte ions and electrons, occurrence of redox reactions as well as the higher conductivity of the sample. From stand point of comparison, the capacitance of Ni–Fe–S is more than that of Ni–Fe–OH. Therefore, the exchange of O2− with S2− in Ni–Fe–OH lattice obviously improves the electrochemical performance. The as-fabricated Ni–Fe sulfide electrode exhibits a tremendous specific capacitance of 884.9 F g−1 at 1 A g−1. Furthermore, an assembled asymmetric supercapacitor device using the activated carbon as negative electrode and this smart configuration (Ni–Fe–S) as positive electrode also provided a maximum specific power and specific energy of 8000 W kg−1, 37.9 Wh kg−1, respectively. Also, it shows cycling stability with 88.8% capacitance retention after 1700 cycles in aqueous electrolyte, demonstrating its potential application in the next-generation high-performance supercapacitors used for energy storage.

Supplementary material

10854_2019_738_MOESM1_ESM.doc (238 kb)
Supplementary material 1 (DOC 238 KB)

References

  1. 1.
    R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000)CrossRefGoogle Scholar
  2. 2.
    J.R. Miller, A.F. Burke, Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17(1), 53 (2008)Google Scholar
  3. 3.
    R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. Acs Nano 9(6), 6288–6296 (2015)CrossRefGoogle Scholar
  4. 4.
    W. Fu, C. Zhao, W. Han, Y. Liu, H. Zhao, Y. Ma, E. Xie, Cobalt sulfide nanosheets coated on NiCo 2 S 4 nanotube arrays as electrode materials for high-performance supercapacitors. J. Mater. Chem. A 3(19), 10492–10497 (2015)CrossRefGoogle Scholar
  5. 5.
    D.Y. Kim, G. Ghodake, N. Maile, A. Kadam, D.S. Lee, V. Fulari, S. Shinde, Chemical synthesis of hierarchical NiCo 2 S 4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor. Sci. Rep. 7(1), 9764 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Li, L. Tan, G. Li, Y.Z.B. Wu, Insight into synergy within multi-decorated graphene 3D networks for high performance supercapacitor. J. Solid State. Chem. 251, 266–273 (2017)CrossRefGoogle Scholar
  7. 7.
    X. Xu, J. Gao, Q. Tian, X. Zhai, Y. Liu, Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor. Appl. Surf. Sci. 411, 170–176 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Winter, R.J. Brodd (2004) What are batteries, fuel cells, and supercapacitors?. ACS Publ. 104(10):4245–4270Google Scholar
  9. 9.
    G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Suominen, S. Lehtimäki, R. Yewale, P. Damlin, S. Tuukkanen, C. Kvarnström, Electropolymerized polyazulene as active material in flexible supercapacitors. J. Power Sources 356, 181–190 (2017)CrossRefGoogle Scholar
  11. 11.
    Z. She, Development of co-assembly methods for improved graphene/ionic liquid supercapacitors. (UWSpace, Madison, 2017)Google Scholar
  12. 12.
    K. Xu, Q. Ren, Q. Liu, W. Li, R. Zou, J. Hu, Design and synthesis of 3D hierarchical NiCo2S4@ MnO2 core–shell nanosheet arrays for high-performance pseudocapacitors. RSC Adv. 5(55), 44642–44647 (2015)CrossRefGoogle Scholar
  13. 13.
    Z. Li, Y. An, Z. Hu, N. An, Y. Zhang, B. Guo, Z. Zhang, Y. Yang, H. Wu, Preparation of a two-dimensional flexible MnO 2/graphene thin film and its application in a supercapacitor. J. Mater. Chem. A 4(27), 10618–10626 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Kim, C. Young, J. Lee, M.S. Park, M. Shahabuddin, Y. Yamauchi, J.H. Kim, CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors. Chem. Commun. 52(88), 13016–13019 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Azhari, Additive manufacturing of graphene-based devices. (UW Space, Madison, 2017)Google Scholar
  16. 16.
    N.I. Chandrasekaran, H. Muthukumar, A.D. Sekar, M. Manickam, Hollow nickel-aluminium-manganese layered triple hydroxide nanospheres with tunable architecture for supercapacitor application. Mater. Chem. Phys. 195, 247–258 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Bi, A. Nautiyal, H. Zhang, J. Luo, X. Zhang, One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors. Electrochim. Acta 260, 952–958 (2018)CrossRefGoogle Scholar
  18. 18.
    H. Lee, W.J. Lee, Y.K. Park, S.J. Ki, B.J. Kim, S.C. Jung, Liquid phase plasma synthesis of iron oxide nanoparticles on nitrogen-doped activated carbon resulting in nanocomposite for supercapacitor applications. Nanomateterials 8(4), 190 (2018)CrossRefGoogle Scholar
  19. 19.
    C. Chen, M.K. Wu, K. Tao, J. Zhou, Y.L. Li, X. Han, L. Han, Formation of bimetallic metal-organic frameworks nanosheets and their derived porous nickel-cobalt sulfides for supercapacitors. Dalton Trans. 47, 5639–5645 (2018)CrossRefGoogle Scholar
  20. 20.
    Q. Gao, X. Wang, Z. Shi, Z. Ye, W. Wang, N. Zhang, Z. Hong, M. Zhi, Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem. Eng. J. 331, 185–193 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Kim, J. Lee, J. You, M.S. Park, M.S. Al Hossain, Y. Yamauchi, J.H. Kim, Conductive polymers for next-generation energy storage systems: recent progress and new functions. Mater. Horiz. 3(6), 517–535 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Moussa, M.F. El-Kady, S. Abdel-Azeim, R.B. Kaner, P. Majewski, J. Ma, Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density. Compos. Sci. Technol 160, 50–59 (2018)CrossRefGoogle Scholar
  23. 23.
    S.P. Vattikuti, A.K.R. Police, J. Shim, C. Byon, Sacrificial-template-free synthesis of core-shell C@ Bi2S3 heterostructures for efficient supercapacitor and H2 production applications. Sci. Rep 8(1), 4194 (2018)CrossRefGoogle Scholar
  24. 24.
    T. Liu, L. Zhang, W. You, J. Yu, Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12), 1702407 (2018)CrossRefGoogle Scholar
  25. 25.
    I. Dhole, Y. Navale, C. Pawar, S. Navale, V. Patil, Physicochemical and supercapacitive properties of electroplated nickel oxide electrode: effect of solution molarity. J. Mater. Sci. Mater. Electron 29(7), 5675–5687 (2018)CrossRefGoogle Scholar
  26. 26.
    H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, H. Wan, Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J. Power Sources 248, 28–36 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Kakvand, M.S. Rahmanifar, M.F. El-Kady, A. Pendashteh, M.A. Kiani, M. Hashami, M. Najafi, A. Abbasi, M.F. Mousavi, R.B. Kaner, Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. Nanotechnology 27(31), 315401 (2016)CrossRefGoogle Scholar
  28. 28.
    P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy. Environ. Sci 3(9), 1238–1251 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Jiang, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater 24(38), 5166–5180 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Zhu, L. Xiang, D. Xi, Y. Zhou, J. Yang, One-step hydrothermal synthesis of flower-like CoS hierarchitectures for application in supercapacitors. Bull. Mater. Sci. 41(2), 54 (2018)CrossRefGoogle Scholar
  31. 31.
    C.A. Pandey, S. Ravuri, R. Ramachandran, R. Santhosh, S. Ghosh, S. Sitaraman, A.N. Grace, Synthesis of NiS–graphene nanocomposites and its electrochemical performance for supercapacitors. Int. J. Nanosci. 17(01n02), 1760021 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Zhou, J. He, L. Wang, S. Zhao, Q. Wang, S. Cui, X. Qin, R. Wang, Synthesis of carbonized-cellulose nanowhisker/FeS 2@ reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Sol. Energy 166, 71–79 (2018)CrossRefGoogle Scholar
  33. 33.
    F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, Ultrathin NiCo 2 S 4@ graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. J. Mater. Chem. A6(14), 5856–5861 (2018)CrossRefGoogle Scholar
  34. 34.
    S.H. Park, Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2-y) material for lithium secondary batteries. Electrochim. Acta 47(11), 1721–1726 (2002)CrossRefGoogle Scholar
  35. 35.
    J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng, Z. Wang, Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain. Chem. Eng. 2(4), 809–815 (2013)CrossRefGoogle Scholar
  36. 36.
    R. Jia, F. Zhu, S. Sun, T. Zhai, H. Xia, Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@ Fe2O3 anode and working potential enlarged MnO2 cathode. J. Power Sources 341, 427–434 (2017)CrossRefGoogle Scholar
  37. 37.
    G.S. Jang, S. Ameen, M.S. Akhtar, H.S. Shin, Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 44(1), 588–595 (2018)CrossRefGoogle Scholar
  38. 38.
    P. Zhou, L. Fan, J. Wu, C. Gong, J. Zhang, Y. Tu, Facile hydrothermal synthesis of NiTe and its application as positive electrode material for asymmetric supercapacitor. J. Alloy. Compd. 685, 384–390 (2016)CrossRefGoogle Scholar
  39. 39.
    Z. Xu, J. Yu, G. Liu, B. Cheng, P. Zhou, X. Li, Microemulsion-assisted synthesis of hierarchical porous Ni (OH) 2/SiO2 composites toward efficient removal of formaldehyde in air. Dalton Trans. 42(28), 10190–10197 (2013)CrossRefGoogle Scholar
  40. 40.
    M.C. Biesinger, B.P. Payne, L.W. Lau, A. Gerson, R.S.C. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Sur. Interface Anal. 41(4), 324–332 (2009)CrossRefGoogle Scholar
  41. 41.
    C.V. Gopi, M. Venkata-Haritha, S. Ravi, C.V. Thulasi-Varma, S.K. Kim, H.J. Kim, Solution processed low-cost and highly electrocatalytic composite NiS/PbS nanostructures as a novel counter-electrode material for high-performance quantum dot-sensitized solar cells with improved stability. J. Mater. Chem. C 3(48), 12514–12528 (2015)CrossRefGoogle Scholar
  42. 42.
    Z. Yu, Z. Kang, Z. Hu, J. Lu, Z. Zhou, S. Jiao, Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. ChemComm. 52(68), 10427–10430 (2016)Google Scholar
  43. 43.
    S.Y. Lee, Y.C. Kang, Sodium-ion storage properties of FeS–reduced graphene oxide composite powder with a crumpled structure. Chem. Eur. J. 22(8), 2769–2774 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Hussain, T. Liu, N. Aslam, Y. Zhang, S. Zhao, Truncated NiCo2S4 cubohexa-octahedral nanostructures for high-performance supercapacitor. Mater. Lett. 189, 21–24 (2017)CrossRefGoogle Scholar
  45. 45.
    T. Huang, X.Z. Song, X. Chen, X.L. Chen, F.F. Sun, Q.F. Su, L.D. Li, Z. Tan, Carbon coated nickel–cobalt bimetallic sulfides hollow dodecahedrons for a supercapacitor with enhanced electrochemical performance. New J. Chem. 42(7), 5128–5134 (2018)CrossRefGoogle Scholar
  46. 46.
    L. Hou, H. Hua, R. Bao, Z. Chen, C. Yang, S. Zhu, G. Pang, L. Tong, C. Yuan, X. Zhang, AnionExchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties. ChemPlusChem 81(6), 557–563 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Pu, T. Wang, H. Wang, Y. Tong, C. Lu, W. Kong, Z. Wang, Direct growth of NiCo2S4 nanotube arrays on nickel foam as highperformance binderfree electrodes for supercapacitors. ChemPlusChem 79(4), 577–583 (2014)CrossRefGoogle Scholar
  48. 48.
    Z. Wu, High energy density asymmetric supercapacitors from mesoporous NiCo2S4 nanosheets. Electrochim. Acta 174, 238–245 (2015)CrossRefGoogle Scholar
  49. 49.
    M.C. Liu, J.J. Li, Y.X. Hu, Q.Q. Yang, L. Kang, Design and fabrication of Ni3P2O8-Co3P2O8· 8H2O as advanced positive electrodes for asymmetric supercapacitors. Electrochim. Acta 201, 142–150 (2016)CrossRefGoogle Scholar
  50. 50.
    B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films I. Theory. J. Electrochem. Soc. 157(12), C452–C457 (2010)CrossRefGoogle Scholar
  51. 51.
    V.M.W. Huang, V. Vivier, M.E. Orazem, N. Pébère, B. Tribollet, The apparent constant-phase-element behavior of a disk electrode with faradaic reactions a global and local impedance analysis. J. Electrochem. Soc 154(2), C99–C107 (2007)CrossRefGoogle Scholar
  52. 52.
    M. Kim, J. Kim, Development of high power and energy density microsphere silicon carbide–MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys. Chem. Chem. Phys. 16(23), 11323–11336 (2014)CrossRefGoogle Scholar
  53. 53.
    F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Tong, X.X. Liu, Y. Li, High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5(17), 7984–7990 (2013)CrossRefGoogle Scholar
  54. 54.
    W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces 6(21), 19318–19326 (2014)CrossRefGoogle Scholar
  55. 55.
    X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16, 71–80 (2015)CrossRefGoogle Scholar
  56. 56.
    Y. Zhu, Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J. Power Sources 273, 584–590 (2015)CrossRefGoogle Scholar
  57. 57.
    W. Kong, Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 3(23), 12452–12460 (2015)CrossRefGoogle Scholar
  58. 58.
    Z. Zeng, D. Wang, J. Zhu, F. Xiao, Y. Li, X. Zhu, NiCo2 S4 nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors. Cryst. Eng. Commun. 18(13), 2363–2374 (2016)CrossRefGoogle Scholar
  59. 59.
    Y. Zhang, J. Xu, Y. Zheng, Y. Zhang, X. Hu, T. Xu, NiCo2S4@ NiMoO4 core-shell heterostructure nanotube arrays grown on Ni foam as a binder-free electrode displayed high electrochemical performance with high capacity. Nanoscale Res. Lett. 12(1), 412–420 (2017)CrossRefGoogle Scholar
  60. 60.
    Q. Chen, J. Miao, L. Quan, D. Cai, H. Zhan, Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors. Nanoscale 10(8), 4051–4060 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mansoreh Naseri
    • 1
  • Morteza Moradi
    • 1
    Email author
  • Shaaker Hajati
    • 1
  • Juan Pedro Espinos
    • 2
  • Mohammad Ali Kiani
    • 3
  1. 1.Materials and Energy Research Center (MERC)TehranIran
  2. 2.Institute of Materials Science of Seville (CSIC)SevilleSpain
  3. 3.Chemistry & Chemical Engineering Research Center of IranTehranIran

Personalised recommendations