Advertisement

Huge enhancement of upconversion photoluminescence in In3+ doped Ba0.85−xCa0.15TiO3:0.75%Er3+/xIn3+ lead-free ferroelectric ceramics

  • Ting-Wei Chen
  • Zhi-Xue Xu
  • Yuan-Yuan Zhang
  • Meng Xu
  • Fang-Yuan Fan
  • Jian-Min Yan
  • Lei GuoEmail author
  • Lai-Hui Luo
  • Ren-Kui ZhengEmail author
Article
  • 51 Downloads

Abstract

Enhanced green and red upconversion emissions under 980 nm excitation are observed in Ba0.85−xCa0.15TiO3:0.75%Er3+/xIn3+ lead-free ferroelectric ceramics which were synthesized by solid state reaction method. With increasing In3+ ions doping level from x = 0% mol the green and red emission intensities increase and reach the maximum at x = 1.75% mol. The maximum intensity of green emission at 550 nm is 20 times larger than In3+ ions undoped samples, which is unprecedented for Er3+-doped perovskite ferroelectric materials. Based on the ultraviolet-visible-near infrared absorption spectra, the enhancement of the luminescence intensity of the A-site In3+ doped Ba0.85−xCa0.15TiO3:0.75%Er/xIn ceramics is attributed to In3+-doping-induced relative increase in isolate Er3+ and decrease in the clustered-Er3+. The effects of In3+ doping on the crystal structure, dielectric, ferroelectric, piezoelectric properties of the ceramics were also studied and discussed.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51572278).

References

  1. 1.
    F. Auzel, Chem. Rev. 104, 139–174 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Ruan, Z. Yang, H. Zhang, J. Qiu, Z. Song, D. Zhou, Opt. Lett. 43, 3885–3888 (2018)CrossRefGoogle Scholar
  3. 3.
    D. Gao, D. Wang, X. Zhang, X. Feng, H. Xin, S. Yun, D. Tian, J. Mater. Chem. C 6, 622–629 (2018)CrossRefGoogle Scholar
  4. 4.
    W. Shi, Z. Zhang, J. Qin, Y. Zhang, Y. Liu, Y. Liu, H. Gao, Y. Mao, J. Alloy. Compd. 754, 124–130 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Qian, R. Wang, B. Wang, B. Zhang, S. Gao, RSC. Adv. 4, 6652–6656 (2014)CrossRefGoogle Scholar
  6. 6.
    L. Guo, J.M. Yan, Y.Y. Zhang, Z.X. Xu, M. Xu, L.H. Luo, F.F. Wang, Y.K. Liu, S. Dong, R.K. Zheng, J. Mater. Sci. 29, 9007–9015 (2018)Google Scholar
  7. 7.
    H. Zhou, Y.P. Huang, J.M. Yan, L.H. Luo, F.F. Wang, G.L. Yuan, R.K. Zheng, Mater. Lett. 188, 364–367 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Fu, S. Gong, X. Liu, G. Xu, Z. Ren, X. Li, G. Han, J. Mater. Chem. C 3, 382–389 (2015)CrossRefGoogle Scholar
  9. 9.
    T. Zheng, L. Luo, P. Du, A. Deng, W. Li, J. Eur. Ceram. Soc. 38, 575–583 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Wu, C. Fang, J. Lin, C. Liu, L. Luo, M. Lin, X. Zheng, C. Lin, Ceram. Int. 44, 4908–4914 (2018)CrossRefGoogle Scholar
  11. 11.
    Z. Xu, J. Gong, A. Li, Y. Han, Y. Luo, J. Lumines. 135, 10–14 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, J. Hao, C.L. Mak, X. Wei, Opt. Express 19, 1824–1829 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Wu, Z. Wu, W. Qian, Y. Jia, Y. Wang, H. Luo, Mater. Lett. 184, 131–133 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Wang, H. Zhou, X. Wang, A. Pan, J. Phys. Chem. Solids 98, 28–31 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Chen, G.H. Chen, X.Y. Liu, T. Yang, J. Lumines. 195, 314–320 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Chen, G. Chen, X. Liu, J. Xu, X. Zhou, T. Yang, C. Yuan, C. Zhou, Opt. Mater. 81, 78–83 (2018)CrossRefGoogle Scholar
  17. 17.
    L. Li, K. Xu, Y.H. Wang, Z.F. Hu, H. Zhao, Opt. Mater. Express 6, 1022–1030 (2016)Google Scholar
  18. 18.
    L.L. Noto, S.S. Pitale, M.A. Gusowki, J.J. Terblans, O.M. Ntwaeaborwa, H.C. Swart, Powder Technol. 237, 141–146 (2013)CrossRefGoogle Scholar
  19. 19.
    W. Zhang, Y.L. Liang, Z.F. Hu, Z.Y. Feng, M. Lun, X.P. Zhang, X. Sheng, Q. Liu, J. Luo, J. Nanosci. Nanotechnol. 16, 3517–3521 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Yu, Q. Huang, W. Cao, X. Zhang, J. Yu, Acta Chim. Sin. 71, 1639–1646 (2013)CrossRefGoogle Scholar
  21. 21.
    H.R. Li, C.X. Chen, R.K. Zheng, J. Mater. Sci. 26, 3057–3063 (2015)CrossRefGoogle Scholar
  22. 22.
    C.L. Freeman, J.A. Dawson, H.R. Chen, L.B. Ben, J.H. Harding, F.D. Morrison, D.C. Sinclair, A.R. West, Adv. Funct. Mater. 23, 3925–3928 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7, 25–34 (2001)CrossRefGoogle Scholar
  24. 24.
    H.D. Li, C.D. Feng, W.L. Yao, Mater. Lett. 58, 1194–1198 (2004)CrossRefGoogle Scholar
  25. 25.
    Z.Q. Zhuang, M.P. Harmer, D.M. Smyth, R.E. Newnham, Mater. Res. Bull. 22, 1329 (1987)CrossRefGoogle Scholar
  26. 26.
    Q. Yue, L. Luo, X. Jing, W. Li, J. Zhou, J. Alloy. Compd. 610, 276–280 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Wu, Y. Lu, Y. Li, J. Am. Ceram. Soc. 90, 3642–3645 (2007)CrossRefGoogle Scholar
  28. 28.
    L. Luo, P. Du, W. Li, Q. Yue, J. Appl. Phys. 114, 124104 (2013)CrossRefGoogle Scholar
  29. 29.
    N. Jeon, D. Rout, W. Kim, S.J.L. Kang, Appl. Phys. Lett. 98, 072901 (2011)CrossRefGoogle Scholar
  30. 30.
    Q. Zuo, L. Luo, W. Li, F. Wang, J. Phys. D 49, 265303 (2016)CrossRefGoogle Scholar
  31. 31.
    D.K. Khatua, A. Agarwal, A. Mshra, G.D. Adhikary, A. Senyshyn, R. Ranjan, J. Appl. Phys. 124, 104101 (2018)CrossRefGoogle Scholar
  32. 32.
    E. Siegel, K.A. Muller, Phys. Rev. B 20, 3587–3596 (1979)CrossRefGoogle Scholar
  33. 33.
    X. Wu, K.W. Kwok, F. Li, J. Alloy. Compd. 580, 88–92 (2013)CrossRefGoogle Scholar
  34. 34.
    G. Chen, G. Somesfaleam, Y. Liu, Z. Zhang, Q. Sun, F. Wang, Phys. Rev. B 75, 195204 (2007)CrossRefGoogle Scholar
  35. 35.
    P.V. dos Santos, E.A. Gouveia, M.T. de Araujo, A.S. Gouveia-Neto, A.S.B. Sombra, J.A. Medeiros, Neto, Appl. Phys. Lett. 74, 3607 (1999)CrossRefGoogle Scholar
  36. 36.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Alloy. Compd. 583, 305–308 (2004)CrossRefGoogle Scholar
  37. 37.
    W.Q. Shi, M. Bass, M. Birnbaum, J. Opt. Soc. Am. B 7, 1456–1462 (1990)CrossRefGoogle Scholar
  38. 38.
    Y. Qian, R. Wang, C. Xu, W. Wu, X. Wu, C. Yang, J. Alloy. Compd. 527, 152–156 (2012)CrossRefGoogle Scholar
  39. 39.
    M.D. Shinn, W.A. Sibley, M.G. Drexhage, R.N. Brown, Phys. Rev. B 27, 6635 (1983)CrossRefGoogle Scholar
  40. 40.
    M.P. Hehlen, N.J. Cockroft, T.R. Gosnell, A.J. Bruce, Phys. Rev. B 56, 9302 (1997)CrossRefGoogle Scholar
  41. 41.
    D.M. Gill, L. McCaughan, J.C. Wright, Phys. Rev. B 53, 2334 (1996)CrossRefGoogle Scholar
  42. 42.
    Y. Wang, J. Ohwaki, Appl. Phys. Lett. 63, 3268–3270 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ting-Wei Chen
    • 1
    • 2
  • Zhi-Xue Xu
    • 2
  • Yuan-Yuan Zhang
    • 3
  • Meng Xu
    • 2
  • Fang-Yuan Fan
    • 2
  • Jian-Min Yan
    • 2
  • Lei Guo
    • 2
    • 4
    Email author
  • Lai-Hui Luo
    • 3
  • Ren-Kui Zheng
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringNanchang UniversityNanchangChina
  2. 2.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of ScienceShanghaiChina
  3. 3.Department of Microelectronic Science and EngineeringNingbo UniversityNingboChina
  4. 4.School of PhysicsSoutheast UniversityNanjingChina

Personalised recommendations