Advertisement

Synthesis and fabrication of zinc oxide nanostrands based piezoelectric nanogenerator

  • Jasleen KaurEmail author
  • Harminder Singh
Article
  • 18 Downloads

Abstract

Development in the field of energy generation has always been a topic of great interest. In this work a new type of Zinc Oxide pattern (fibre-like thin strands) is grown on aluminium substrate. Uncomplicated Hydrothermal method using Zinc nitrate hexahydrate and hexamethylenetetramine is adopted for growing Zinc Oxide nanostrands. The surface morphology and composition was revealed by Scanning electron microscopy, Energy dispersive spectroscopy and X-ray diffraction. The so grown film was then employed in the fabrication of nanogenerator that can harvest energy up to 150 mV and 400 nA. This much power production is enough to be supplied to self- powered nanosystem. Moreover simplicity of this method might make synthesis to device fabrication much more of a commercial reality. Simulation results of such a nanostrand structure are also depicted in this paper that are in conformity with piezoelectric nanogenerators.

References

  1. 1.
    S. Kamila, Introduction, classification and application of smart material: an overview. Am. J. Appl. Phys. 10, 876–880 (2013).  https://doi.org/10.3844/ajassp.2013.876.880 Google Scholar
  2. 2.
    S. Numminen, P.D. Lund, Frugal energy innovations for developing countries—a framework. Energy. 1(1), 9–19 (2017).  https://doi.org/10.1002/gch2.1012 Google Scholar
  3. 3.
    K. Friesenbichler, Innovation in energy sector. WWW Eur. 302, 31 (2013)Google Scholar
  4. 4.
    A. Razdan, The future of energy in India. Living Energy 3, 63–65 (2010)Google Scholar
  5. 5.
    A. Moezzi, A.M. McDonagh, M.B. Corti, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J., 185, 1–22 (2012)Google Scholar
  6. 6.
    K. Uchino, Introduction to piezoelectric transducers and actuators. in International Conference on Intelligent Materials (2003)Google Scholar
  7. 7.
    V. Jayachandran, N.E. Meyer, M.A. Westervelt, J.Q. Sun, Piezoelectrically driven speakers for active aircraft interior. Appl. Acoust. 56, 263–277 (1999)CrossRefGoogle Scholar
  8. 8.
    K.C. Bailo, D.E. Brei, K. Grosh, Investigation of curved polymeric piezoelectric active diaphragms. J. Vib. Acoust. 125, 145–154 (2003).  https://doi.org/10.1115/1.1547461 CrossRefGoogle Scholar
  9. 9.
    Z. Yuan, M. Fu, Y. Ren, et al., Synthesis of zinc oxide colloidal nanorods for inorganic–organic hybrid photodiode application. J. Mater. Sci. 26, 8212–8216 (2015)Google Scholar
  10. 10.
    X. Wang, F. Chen, Effects of fullerene monolayer on the performance of zinc oxide/ poly(3-hexylthiophene) bilayer hybrid solar cells. J. Mater. Sci. 26, 1125–1128 (2015)Google Scholar
  11. 11.
    T. Morita, Miniature piezoelectric motors. Sens. Actuators A 103, 291–300 (2003)CrossRefGoogle Scholar
  12. 12.
    J. Brunahl, A.M. Grishin, Piezoelectric shear mode drop on demand inkjet actuator. Sens. Actuators A 101, 371–382 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Calvert, Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001)CrossRefGoogle Scholar
  14. 14.
    M.-P. Lu, J. Song, M.-Y. Lu, et al., Piezoelectric nanogenerator using p-Type ZnO nanowire arrays. Nano Lett. 9, 1223–1227 (2009).  https://doi.org/10.1021/nl900115y CrossRefGoogle Scholar
  15. 15.
    Y.B. Hahn, Zinc oxide nanostructures and their applications. Korean J. Chem. Eng. 28, 1797–1813 (2011)CrossRefGoogle Scholar
  16. 16.
    P.X. Gao, Y. Ding, W. Mai, et al., Conversion of zinc oxide nanobelts into superlattice-structure nanohelices. Science 309, 1700–1704 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Chabni, H. Bougherra, H. Lounici, et al., Evaluation of physical stability of zinc oxide suspensions containing sodium poly-(acrylate) and sodium dodecylsulphate. J. Dispers. Sci. Technol. 32, 1786–1798 (2012)CrossRefGoogle Scholar
  18. 18.
    A.K. Radzimska, T. Jesionowski, Zinc oxide from synthesis to application—a review. Materials 7, 2833–2881 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Zang, Z.-H. Xu, R.A. Webb, X. Li, Electrical self-healing of mechanically damaged zinc oxide nanobelts. Nano Lett. 11, 241–244 (2011).  https://doi.org/10.1021/nl103637k CrossRefGoogle Scholar
  20. 20.
    K.H. Kim, K. Utashiro, Y. Abe, M. Kawamura, Growth of zinc oxide nanorods using various seed layer annealing temperature and substrate materials. Int. J. Electrochem. Sci. 9, 2080–2089 (2014)CrossRefGoogle Scholar
  21. 21.
     Z.L. Wang, Nanostructures of zinc oxide. Mater. Today. 7(6), 26–33 (2004)Google Scholar
  22. 22.
    T. Stanley, W.J. Perold, U. Buttner, The output voltage of zinc oxide nanogenerator grown by various methods, in 11th IEEE international conference on nanotechnology, (2011), pp. 86–90Google Scholar
  23. 23.
    R. Wahab, Y.S. Kim, H.S. Shin, Synthesis, characterisation and effect of pH variation on zinc oxide nanostructure. Mater. Trans. 50, 2092–2097 (2009)CrossRefGoogle Scholar
  24. 24.
    Y. Rusen, Y. Qin, C. Li, et al., Converting biomechanical energy into electricity by a muscle movement driven nanogenerator. Nano Lett. 9, 1201–1205 (2009)CrossRefGoogle Scholar
  25. 25.
    L.E. Greene, B.D. Yuhas, M. Law et al., Solution grown zinc oxide nanowire. Inorganic Chem. 45, 7535–7543 (2006)CrossRefGoogle Scholar
  26. 26.
    Z.L. Wang, Towards self powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18, 3553–3567 (2008)CrossRefGoogle Scholar
  27. 27.
    J. Liu, P. Fei, J. Zhou, R. Tummala, Z.L. Wang, Towards high output power nanogenerator. Appl. Phys. Lett. 92, 173105 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Sirohi, I. Chopra, Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11, 246–257 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guru Nanak Dev UniversityAmritsarIndia

Personalised recommendations