Dielectric properties of low-temperature sintering Ba5LaMgNb9O30 ceramic with Li3NbO4 addition under nitrogen atmosphere

  • Hai Jiang
  • Yong-Ming Hu
  • Xiang-Hui Zhang
  • Mao-Lin Mu
  • Xiao-Hong WangEmail author
  • Wen-Zhong Lu


Ba5LaMgNb9O30 ceramics with the addition of Li3NbO4 sintered under nitrogen atmosphere were synthesized and characterized. The phase structure, microstructure, dielectric properties and impedance spectroscopy of the prepared ceramics were investigated. All samples showed a diffuse phase transition and the diffuse exponent γ was calculated. With the addition of Li3NbO4, Li+ could enter the C-sites of BLMN ceramics, which modified the composition of the tungsten bronze structure and improved the performance. Results show that addition of Li3NbO4 decreased the sintering temperature of BLMN ceramics to 1050 °C and improved dielectric properties of nitrogen-sintered BLMN ceramics. Impedance spectroscopy analysis indicated that the performance for nitrogen-sintered ceramics was comparable to air-sintered samples at the temperature below 400 °C. The dielectric properties of BLMN ceramics were influenced by the amount of Li3NbO4, and the 15 wt% Li3NbO4-added BLMN ceramic sintered at 1050 °C in nitrogen for 3 h showed good dielectric properties at 1 MHz of εr = 122.19, tanδ = 0.00686 and τε = −631 ppm/°C. The Li3NbO4-added BLMN ceramics have application potential for the multilayer ceramic capacitors co-fired with base metal electrode.



This work is financially supported by the National Nature Science Foundation of China (grant no. 51302093, 61201051) and the Open Project Foundation of Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices (grant no. 201702). The authors are grateful to Analytical and Testing Center, Huazhong University of Science and Technology for XRD and SEM analysis.


  1. 1.
    R.J. Xie, Y. Akimune, K. Matsuo, T. Sugiyama, Appl. Phys. Lett. 80, 835 (2002)CrossRefGoogle Scholar
  2. 2.
    A. Glassam, J. Appl. Phys. 40, 4699 (1969)CrossRefGoogle Scholar
  3. 3.
    W.C. Liu, C.L. Mak, K.H. Wong, J. Phys. D 42, 105114 (2009)CrossRefGoogle Scholar
  4. 4.
    X.H. Wang, H. Jiang, M.J. Wang, M.X. Li, W.Z. Lu, J. Mater. Sci. 26, 1913 (2015)Google Scholar
  5. 5.
    R. Ubic, I. Mreaney, W.E. Lee, Int. Mater. Rev. 43, 205 (1998)CrossRefGoogle Scholar
  6. 6.
    X.M. Chen, J.S. Yang, J. Eur. Ceram. Soc. 19, 139 (1999)CrossRefGoogle Scholar
  7. 7.
    L. Fang, Q. Yu, C.Z. Hu, H. Zhang, Mater. Lett. 61, 4140 (2007)CrossRefGoogle Scholar
  8. 8.
    L. Fang, X.Y. Peng, C.C. Li, C.Z. Hu, B.L. Wu, H.F. Zhou, J. Am. Ceram. Soc. 93, 945 (2010)CrossRefGoogle Scholar
  9. 9.
    X.H. Wang, M.X. Li, C. Zhou, M.J. Wang, W.Z. Lu, Ceram. Int. 40, 39 (2014)CrossRefGoogle Scholar
  10. 10.
    J.M. Haussonne, G. Desgardin, P. Bajolet, B. Raveau, J. Am. Ceram. Soc. 66, 801 (1983)CrossRefGoogle Scholar
  11. 11.
    D. Tolino, J. Blum, J. Am. Ceram. Soc. 68, C292 (1985)CrossRefGoogle Scholar
  12. 12.
    H. Anderson, M. Proudian, Materials science research, (Springer, Berlin, 1984), pp. 281–292Google Scholar
  13. 13.
    D. Zhou, H. Wang, L.X. Pang, X. Yao, X.G. Wu, J. Am. Ceram. Soc. 91, 4115 (2008)CrossRefGoogle Scholar
  14. 14.
    R.D. Shannon, Acta Cryst. A32, 751 (1976)CrossRefGoogle Scholar
  15. 15.
    M. Li, D.C. Sinclair, J. Appl. Phys. 111, 054106 (2012)CrossRefGoogle Scholar
  16. 16.
    P. Sateesh, J. Omprakash, G.S. Kumar, G. Prasad, J. Adv. Dielectr. 5, 1550002 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Lab of Functional Materials for Electronic Information(B), MOE, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic ScienceHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations