Advertisement

The effect of different Cu/Sn ratios on the properties of monoclinic Cu2SnS3 thin films and solar cells fabricated by the sol–gel method

  • Jie Wu
  • Chunhui Gao
  • Lu Han
  • Shanshan Shen
  • Ming JiaEmail author
  • Li Wang
  • Liangxing JiangEmail author
  • Fangyang Liu
Article
  • 83 Downloads

Abstract

Ternary Cu2SnS3 (CTS) is a promising material for thin-film solar cells because it consists of nontoxic and earth-abundant elements. The present paper reports the preparation of monoclinic CTS thin films by a sol–gel solution-based method. The effects of the Cu/Sn atomic ratio on the structure and morphology were investigated. As the atomic ratio of Cu/Sn varied from 1.6 to 2.0, the compactness of the CTS films improved; furthermore, secondary phases, such as SnS, gradually disappeared; and the grain size of the films decreased. The CTS film with a Cu/Sn ratio of 1.9 showed a monoclinic structure with homogeneous morphology and a band gap of 1.12 eV, yielding a power conversion efficiency of 0.58%. These results could pave the way for the development of CTS thin-film solar cells.

Notes

Acknowledgements

This work was partially supported by the Fundamental Research Funds of Central South University (Grant Nos. 2018zzts431 and 2018zzts142) and the National Natural Science Foundation of China (51774341 and 51804352).

Supplementary material

10854_2019_725_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 KB)

References

  1. 1.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi (RRL)-Rapid Res. Lett. 10, 583 (2016)CrossRefGoogle Scholar
  2. 2.
    S. First, First solar achieves yet another cell conversion efficiency world record, http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=956479 (2016)
  3. 3.
    J. Kim, H. Hiroi, T.K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y.S. Lee, W. Wang, H. Sugimoto, D.B. Mitzi, High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter. Adv. Mater. 26, 7427 (2014)CrossRefGoogle Scholar
  4. 4.
    F. Liu, C. Yan, J. Huang, K. Sun, F. Zhou, J.A. Stride, M.A. Green, X. Hao, Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in Kesterite Cu2ZnSnS4 solar cells. Adv. Energy Mater. 6, 1600706 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Tao, J. Liu, L. Chen, H. Cao, X. Meng, Y.B. Zhang, C. Zhang, L. Sun, P. Yang, 7.1% Efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chem. 18, 550 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki, Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%. Jpn. J. Appl. Phys. 54, 08KC06 (2015)CrossRefGoogle Scholar
  7. 7.
    I.Y. Kim, Y.L. Ju, U.V. Ghorpade, M.P. Surywanshi, S.L. Dong, H.K. Jin, Influence of annealing temperature on the properties and solar cell performance of Cu2SnS3 (CTS) thin film prepared using sputtering method. J. Alloys Compd. 688, 12 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Onoda, X.A. Chen, A. Sato, H. Wada, Crystal structure and twinning of monoclinic Cu2SnS3. Mater. Res. Bull. 35, 1563 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Bouaziz, M. Amlouk, S. Belgacem, Structural and optical properties of Cu2SnS3 sprayed thin films. Thin Solid Films 517, 2527 (2009)CrossRefGoogle Scholar
  10. 10.
    U.V. Ghorpade, M.P. Suryawanshi, S.W. Shin, I. Kim, S.K. Ahn, J.H. Yun, C. Jeong, S.S. Kolekar, H.K. Jin, Colloidal Wurtzite Cu2SnS3 (CTS) nanocrystals and their applications in solar cells. Chem. Mater. 28, 3308–3317 (2016)Google Scholar
  11. 11.
    A. Hultqvist, T. Sone, S.F. Bent, Buffer layer point contacts for CIGS solar cells using nanosphere lithography and atomic layer deposition. IEEE J. Photovolt. 7, 322 (2016)CrossRefGoogle Scholar
  12. 12.
    B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Photovoltaic Specialists Conference, p. 000004 (2012)Google Scholar
  13. 13.
    T.A. Kuku, O.A. Fakolujo, Photovoltaic characteristics of thin films of Cu2SnS3. Sol. Energy Mater. Sol. Cells. 16, 199 (1986)CrossRefGoogle Scholar
  14. 14.
    M. TS Umehara, Y. Aoki, M. Takeda, T. Motohiro, Cu2Sn1–xGexS3 solar cells fabricated with a graded bandgap structure. Appl. Phys. Express 9, 072301 (2016)CrossRefGoogle Scholar
  15. 15.
    A.C. Lokhande, R.B.V. Chalapathy, M. He, E. Jo, M. Gang, S.A. Pawar, C.D. Lokhande, H.K. Jin, Development of Cu2SnS3(CTS) thin film solar cells by physical techniques: a status review. Sol. Energy Mater. Sol. Cells 153, 84 (2016)CrossRefGoogle Scholar
  16. 16.
    W. Wang, H. Cai, G. Chen, B. Chen, L. Yao, J. Dong, X. Yu, S. Chen, Z. Huang, Preparation of Sn loss-free Cu2SnS3 thin films by an oxide route for solar cell. J. Alloys Compd. 742, 860 (2018)CrossRefGoogle Scholar
  17. 17.
    R.B. Ettlinger, A. Cazzaniga, S. Canulescu, N. Pryds, J. Schou, Pulsed laser deposition from ZnS and Cu2SnS3 multicomponent targets. Appl. Surf. Sci. 336, 385 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Tiwari, T.K. Chaudhuri, Synthesis of earth-abundant Cu2SnS3 for solar cells. AIP Conf. Proc. 1349, 1295 (2011)CrossRefGoogle Scholar
  19. 19.
    B. Qu, M. Zhang, D. Lei, Y. Zeng, Y. Chen, L. Chen, Q. Li, Y. Wang, T. Wang, Facile solvothermal synthesis of mesoporous Cu2SnS3 spheres and their application in lithium-ion batteries. Nanoscale 3, 3646 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Goossens, J. Hofhuis, Spray-deposited CuInS2 solar cells. Nanotechnology 19, 3332 (2008)CrossRefGoogle Scholar
  21. 21.
    V.S. Raja, U. Chalapathi, S. Uthanna, Growth and characterization of Cu2SnS3 thin films by spray pyrolysis. AIP Conf. 1451, 106 (2012)Google Scholar
  22. 22.
    R. Bodeux, J. Leguay, S. Delbos, Influence of composition and annealing on the characteristics of Cu2SnS3 thin films grown by cosputtering at room temperature. Thin Solid Films 582, 229 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Dias, B. Murali, S.B. Krupanidhi, Transport properties of solution processed Cu2SnS3/AZnO heterostructure for low cost photovoltaics. Sol. Energy Mater. Sol. Cells 143, 152 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Su, K. Sun, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, Fabrication of ternary Cu-Sn-S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method. J. Mater. Chem. 22, 16346 (2012)CrossRefGoogle Scholar
  25. 25.
    M.R. Golobostanfard, H. Abdizadeh, A. Jannati, Solution processable wurtzite CuInS2 inverted type solar cell. Sol. Energy Mater. Sol. Cells 164, 1 (2017)CrossRefGoogle Scholar
  26. 26.
    J.J. Chaudhari, U.S. Joshi, Fabrication of high quality Cu2SnS3 thin film solar cell with 1.12% power conversion efficiency obtain by low cost environment friendly sol-gel technique. Mater. Res. Express 5, 2053 (2018)Google Scholar
  27. 27.
    Y. Wang, J. Li, C. Xue, Y. Zhang, G. Jiang, W. Liu, C. Zhu, Fabrication of Cu2SnS3 thin-film solar cells with oxide precursor by pulsed laser deposition. J. Mater. Sci. 52, 6225 (2017)CrossRefGoogle Scholar
  28. 28.
    M.P. Suryawanshi, U.V. Ghorpade, S.W. Shin, S.A. Pawar, I. Kim, C. Hong, M. Wu, P.S. Patil, A.V. Moholkar, H.K. Jin, A Simple aqueous precursor solution processing of earth-abundant Cu2SnS3 absorbers for thin-film solar cells. ACS Appl. Mater. Interfaces 8, 11603 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Crovetto, R. Chen, R.B. Ettlinger, A.C. Cazzaniga, J. Schou, C. Persson, O. Hansen, Dielectric function and double absorption onset of monoclinic Cu2SnS3: origin of experimental features explained by first-principles calculations. Sol. Energy Mater. Sol. Cells 154, 121 (2016)CrossRefGoogle Scholar
  30. 30.
    E. Blanco, D. Uzio, G. Berhault, P. Afanasiev, From core–shell MoSx/ZnS to open fullerene-like MoS2 nanoparticles. J. Mater. Chem. A 2, 3325 (2014)CrossRefGoogle Scholar
  31. 31.
    K.M. Naik, S. Sampath, Cubic Mo6S8-efficient electrocatalyst towards hydrogen evolution over wide pH range. Electrochim. Acta 252, 408 (2017)CrossRefGoogle Scholar
  32. 32.
    D. Avellaneda, M.T.S. Nair, P.K. Nair, Photovoltaic structures using chemically deposited tin sulfide thin films. Thin Solid Films 517, 2500 (2009)CrossRefGoogle Scholar
  33. 33.
    S.S. Shinde, A. Sami, D.-H. Kim, J.-H. Lee, Nanostructured SnS-N-doped graphene as an advanced electrocatalyst for the hydrogen evolution reaction. Chem. Commun. 51, 15716 (2015)CrossRefGoogle Scholar
  34. 34.
    F. Hergert, R. Hock, Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) starting from binary chalcogenides. Thin Solid Films 515, 5953 (2007)CrossRefGoogle Scholar
  35. 35.
    B. Patel, R. Narasimman, R.K. Pati, I. Mukhopadhyay, A. Ray, Preparation and characterization of Cu2SnS3 thin films by electrodeposition. Int. Conf. Nanomater. Energy Conv. Storage Appl. 1961, 030046 (2018)Google Scholar
  36. 36.
    L.L. Baranowski, P. Zawadzki, S. Christensen, D. Nordlund, S. Lany, A.C. Tamboli, L. Gedvilas, D.S. Ginley, W. Tumas, E.S. Toberer, A. Zakutayev, Control of doping in Cu2SnS3 through defects and alloying. Chem. Mater. 26(17), 4951–4959 (2014)Google Scholar
  37. 37.
    A.J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy. J. Vac. Sci. Technol. A 29, 051203 (2011)Google Scholar
  38. 38.
    V.M. Dzhagan, A.P. Litvinchuk, M. Kruszynska, J. Kolny-Olesiak, M.Y. Valakh, D.R.T. Zahn, Raman Scattering study of Cu3SnS4 colloidal nanocrystals. J. Phys. Chem. C 118, 27554 (2014)CrossRefGoogle Scholar
  39. 39.
    O. Vigil-Galan, M. Espindola-Rodriguez, M. Courel, X. Fontane, D. Sylla, V. Izquierdo-Roca, A. Fairbrother, E. Saucedo, A. Perez-Rodriguez, Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency. Sol. Energy Mater. Sol. Cells 117, 246 (2013)CrossRefGoogle Scholar
  40. 40.
    Y.L. Ju, I.Y. Kim, M.P. Surywanshi, U.V. Ghorpade, S.L. Dong, H.K. Jin, Fabrication of Cu2SnS3 thin film solar cells using Cu/Sn layered metallic precursors prepared by a sputtering process. Solar Energy 145, 27 (2017)CrossRefGoogle Scholar
  41. 41.
    J. Li, C. Xue, Y. Wang, G. Jiang, W. Liu, C. Zhu, Cu2SnS3 solar cells fabricated by chemical bath deposition—annealing of SnS/Cu stacked layers. Sol. Energy Mater. Sol. Cells 144, 281 (2016)CrossRefGoogle Scholar
  42. 42.
    X. Chen, Z. Li, H. Zhu, Y. Wang, B. Liang, J. Chen, Y. Xu, Y. Mai, CdS/Sb2S3 heterojunction thin film solar cells with a thermally evaporated absorber. J. Mater. Chem. C 5, 9421 (2017)CrossRefGoogle Scholar
  43. 43.
    Y. Dong, J. He, X. Li, Y. Chen, L. Sun, P. Yang, J. Chu, Study on the preheating duration of Cu2SnS3 thin films using RF magnetron sputtering technique for photovoltaics. J. Alloys Compd. 665, 69 (2016)CrossRefGoogle Scholar
  44. 44.
    G.K. Dalapati, S. Zhuk, S. Masudypanah, A. Kushwaha, H.L. Seng, V. Chellappan, V. Suresh, Z. Su, S.K. Batabyal, C.T. Cheng, Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells. Sci. Rep. 7, 1350 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangShaChina
  2. 2.School of Photovoltaic and Renewable Energy EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations