Effect of La doping on structural, magnetic, and optical properties of KBiFe2O5

  • Ranjan Rai
  • Muralikrishna MolliEmail author


In this work, we report the effect of doping with lanthanum ions on structural, magnetic and optical properties of potassium bismuth ferrite KBiFe2O5 (KBFO). KBi1−xLaxFe2O5 (0 ≤ x ≤ 0.15) samples were synthesized using citrate assisted sol–gel technique. X-ray diffraction analysis revealed the crystal structure of KBi1−xLaxFe2O5 (0 ≤ x ≤ 0.15) to be monoclinic, without any significant change in the unit cell parameters. Magnetic properties of the compound enhanced with La doping. Maximum magnetization for an applied magnetic field of 15 kOe for the KBi1−xLaxFe2O5 samples were 0.12 emu/g, 0.28 emu/g, 0.71 emu/g and 1.00 emu/g for x = 0, 0.05, 0.10 and 0.15 respectively. Maximum magnetization increased with lanthanum doping. However, coercivity of the samples reduced drastically when doped with lanthanum (from Hc = 212.90 Oe for x = 0 to Hc = 18.43 Oe for x = 0.15). Along with magnetic properties, optical properties were also studied using diffuse reflectance spectroscopy and photoluminescence spectroscopy. Narrowing of the optical band gap was observed in La doped samples. Photoluminescence spectra of all the samples at excitation wavelength of 450 nm showed emission peaks at 552 nm and 622 nm. With La doping no new emission peaks were observed except for slight shift in the peak emission wavelength.



We express our gratitude to Bhagawan Sri Sathya Sai Baba, the founder chancellor of SSSIHL, for his constant guidance and inspiration. We are grateful to our university, SSSIHL, for providing constant support and lab facilities. We also acknowledge the financial support from DST-FIST (sanction no. SR/FST/PSI-172/2012). We thank Dr. (Mrs.) Maitali Khanna who helped us enormously to improve the presentation of this manuscript.


  1. 1.
    C.C. da Silva, A.S.B. Sombra, Mater. Sci. Appl. 2, 1349 (2011)Google Scholar
  2. 2.
    H.D. Hondt, et al., Chem. Mater. 20, 7188 (2008)CrossRefGoogle Scholar
  3. 3.
    S.Y. Yang, et al., Nat. Nanotechnol. 5, 143 (2010)CrossRefGoogle Scholar
  4. 4.
    G. Ilya, et al., Nature 503, 509 (2013)CrossRefGoogle Scholar
  5. 5.
    W.S. Choi, et al, Nat. Commun. 3, 689 (2012)CrossRefGoogle Scholar
  6. 6.
    J.W. Bennett, et al., J. Am. Chem. Soc. 130, 17409 (2008)CrossRefGoogle Scholar
  7. 7.
    J.W. Bennett, et al., Phys. Rev. B 82, 184106 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Qi, et al., Phys. Rev. B 83, 224108 (2011)CrossRefGoogle Scholar
  9. 9.
    G. Zhang, et al., Sci. Rep. 3, 1265 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, et al., Mater. Sci. Eng. B 132, 311 (2006)CrossRefGoogle Scholar
  11. 11.
    M.A. Jalaja, S. Dutta, Mater. Res. Bull. 88, 9 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Zhang, et al., J. Alloys Compd. 699, 561 (2017)CrossRefGoogle Scholar
  13. 13.
    M.A. Jalaja, P. Predeep, S. Dutta, Mater. Res. Express 4, 016401 (2017)CrossRefGoogle Scholar
  14. 14.
    X.Z. Zhai, et al., RSC Adv. 5, 82351 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Matsukura, et al., Phys. Rev. B 57, R2037 (1998)CrossRefGoogle Scholar
  17. 17.
    J.M.D. Coey, et al., Nat. Mater. 4, 173 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Ounnunkad, et al. J. Electroceram. 16, 357 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Haruta, et al., J. Appl. Phys. 110, 033708 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Vienna, 2018) ISBN 3-9501031-1-2Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSri Sathya Sai Institute of Higher LearningPrasanthinilayamIndia

Personalised recommendations