High performance electrically conductive epoxy/reduced graphene oxide adhesives for electronics packaging applications

  • Ruchi AradhanaEmail author
  • Smita Mohanty
  • Sanjay Kumar Nayak


In the present study, an attempt has been done to prepare an electrically conductive epoxy adhesive filled with the high content of reduced graphene oxide (rGO) (i.e. 10–50 wt%). The lap shear test was performed to study the adhesive strength of epoxy-based adhesive systems. The test results revealed that adhesive with 40 wt% rGO possessed highest shear strength which is 72.8% higher over unmodified epoxy. While the tensile test results showed a decrement of 33% in tensile strength even with the introduction of 10 wt% rGO. The unnotched and notched impact strength of epoxy resin found to be increasing up to 51% and 100% respectively, when 30 wt% rGO was incorporated within the matrix. The fractography analysis of notched impact samples was examined by scanning electron microscopy and unveils that crack pinning is the toughening mechanism for E–rGO adhesive systems. The dispersion assessment of rGO within the epoxy matrix was visualized by transmission electron microscopy technique, revealing the effective distribution of rGO in epoxy matrix. The volume and surface conductivity was increased up to 3.44 × 10−08 S/m and 8.54 × 10−06 S with 50 wt% rGO addition, which are five and five-fold higher in comparison to the epoxy resin. At 35 °C, the thermal conductivity was enhanced by ~ 408% as compared to pristine epoxy, when 50 wt% rGO was included. Fourier transform infra‑red spectroscopy spectra was used to study the nature of interaction between rGO and epoxy matrix. The adhesive systems showed higher thermo-stability with the introduction of rGO as detected by thermo-gravimetric analysis technique.


  1. 1.
    T.K.B. Sharmila, A.B. Nair, B.T. Abraham, P.M.S. Beegum, E. Thomas, Polymer (Guildf) 55, 3614 (2014)CrossRefGoogle Scholar
  2. 2.
    H. Feng, X. Wang, D. Wu, Ind. Eng. Chem. Res. 52, 10160 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Zhang, O. Alloul, Q. He, J. Zhu, M. Joseph, Y. Li, S. Wei, Z. Guo, Polymer (Guildf) 54, 3594 (2013)CrossRefGoogle Scholar
  4. 4.
    Z.A. Ghaleb, M. Mariatti, Z.M. Ariff, Composites A 58, 77 (2014)CrossRefGoogle Scholar
  5. 5.
    P. Pokharel, Q. Truong, D.S. Lee, Composites B 64, 187 (2014)CrossRefGoogle Scholar
  6. 6.
    G. Tang, Z. Jiang, X. Li, H. Zhang, S. Hong, Z. Yu, Composites B 67, 564 (2014)CrossRefGoogle Scholar
  7. 7.
    Graphenea, Reduced Graphene Oxide: Properties, Applications and Production Methods. (2015). Accessed 10 May 2018
  8. 8.
    M. Lundie, Z. Sljivancanin, S. Tomic, J. Mater. Chem. C 3, 7632 (2015)CrossRefGoogle Scholar
  9. 9.
    J.M. Vazquez-moreno, V. Yuste-sanchez, R. Sanchez-hidalgo, R. Verdejo, Eur. Polym. J. 93, 1 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Fan, M.M. Yuen, Nanopackaging (Springer, Cham, 2008), pp. 39–59CrossRefGoogle Scholar
  11. 11.
    G.Y. Li, C.P. Wong, Micro-and Opto-Electronic Materials and Structures, vol 2, (Springer, New York, 2007), pp. B611–B627Google Scholar
  12. 12.
    S. Takeda, T. Masuko, N. Takano, T. Inada, Materials for Advanced Packaging, (Springer, Cham, 2017), pp. 469–510CrossRefGoogle Scholar
  13. 13.
    B.S. Yim, B.H. Lee, J. Kim, J.M. Kim, J. Mater. Sci.: Mater. Electron. 25, 5208 (2014)Google Scholar
  14. 14.
    B.S. Yim, J.M. Kim, J. Mater. Sci.: Mater. Electron. 26, 1678 (2015)Google Scholar
  15. 15.
    M. Li, C. Tang, L. Zhang, B. Shang, S. Zheng, J. Mater. Sci.: Mater. Electron. 28, 15694 (2017)Google Scholar
  16. 16.
    J. Kim, B. Yim, J. Kim, J. Kim, Microelectron. Reliab. 52, 595 (2012)CrossRefGoogle Scholar
  17. 17.
    E. Sancaktar, L. Bai, Polymer (Basel) 3, 427 (2011)CrossRefGoogle Scholar
  18. 18.
    A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, Polym. Adv. Technol. 28, 1851 (2017)CrossRefGoogle Scholar
  19. 19.
    R. Aradhana, S. Mohanty, S.K. Nayak, Polymer (Guildf) 141, 109 (2018)CrossRefGoogle Scholar
  20. 20.
    N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis, J. Jia, E. Zussman, J. Kim, Carbon 59, 406 (2013)CrossRefGoogle Scholar
  21. 21.
    T.K.B. Sharmila, J.V. Antony, M.P. Jayakrishnan, P.M.S. Beegum, E. Thomas, Mater. Des. 90, 66 (2016)CrossRefGoogle Scholar
  22. 22.
    Y.T. Lin, T.M. Don, C.J. Wong, F.C. Meng, Y.J. Lin, S.Y. Lee, C.F. Lee, W.Y. Chiu, Surf. Coat. Technol. (2018). Google Scholar
  23. 23.
    Y. Che, Z. Sun, R. Zhan, S. Wang, S. Zhou, J. Huang, Ceram. Int. 44, 18067 (2018)CrossRefGoogle Scholar
  24. 24.
    A.K. Singh, A. Parhi, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, J. Mater. Sci.: Mater. Electron. 28, 17655 (2017)Google Scholar
  25. 25.
    A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, J. Mater. Sci.: Mater. Electron. 28, 8908 (2017)Google Scholar
  26. 26.
    S.M. Suresh Kumar, K. Subramanian, Adv. Polym. Technol. 37, 612 (2016)CrossRefGoogle Scholar
  27. 27.
    N. Norhakim, S. Ahmad, C. Chia, N. Huang, Sains Malaysiana 43, 603 (2014)Google Scholar
  28. 28.
    N. Adak, S. Chhetri, N. Murmu, P. Samanta, T. Kuila, Crystals 8, 111 (2018)CrossRefGoogle Scholar
  29. 29.
    L.R. Galicia, L.N. Mendez, A.L.M. Hernadez, A.E. Gonzalez, I.R.G. Esquivel, R.F. Ramirez, C.V. Santos, Int. J. Polym. Sci. (2013). Google Scholar
  30. 30.
    S. Chhetri, N.C. Adak, P. Samanta, N.C. Murmu, T. Kuila, Polym. Test. 63, 1 (2017)CrossRefGoogle Scholar
  31. 31.
    H.J. Salavagione, G. Martínez, G. Ellis, Physics and Applications of Graphene Experiments (Intech, London, 2013), pp. 169–192Google Scholar
  32. 32.
    W. Li, H. Li, X. Yang, W. Feng, H. Huang, J. Compos. Mater. 51, 1197 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Tang, H. Zhou, Y. Liang, X. Shi, X. Yang, J. Zhang, J. Nanomater. (2014). Google Scholar
  34. 34.
    S.-Y. Lee, M.-H. Chong, M. Park, H.-Y. Kim, S.-J. Park, Carbon Lett. 15, 67 (2014)CrossRefGoogle Scholar
  35. 35.
    R. Aradhana, S. Mohanty, S.K. Nayak, Int. J. Adhes. 84, 238 (2018)CrossRefGoogle Scholar
  36. 36.
    Q. Liu, X. Yao, Z. Liu, Adv. Mater. Res. 391, 175 (2012)CrossRefGoogle Scholar
  37. 37.
    Y. Sun, L. Chen, J. Lin, P. Cui, M. Li, X. Du, J. Compos. Mater. 51, 1743 (2017)CrossRefGoogle Scholar
  38. 38.
    N. Yousefi, X. Lin, X. Shen, J. Jia, J. Kim, ECCM 2014. 1 (2014)Google Scholar
  39. 39.
    N. Yousefi, X.Y. Lin, X. Shen, J.J. Jia, O.J. Dada, J.K. Kim, ICCM-19, 1 (2013)Google Scholar
  40. 40.
    S. Chhetri, P. Samanta, N. Chandra Murmu, S. Kumar, Srivastava, T. Kuila, AIMS Mater. Sci. 4, 61 (2016)CrossRefGoogle Scholar
  41. 41.
    A. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, J. Yang, Polymer (Basel)10, 477 (2018)CrossRefGoogle Scholar
  42. 42.
    Y.X. Fu, Z.X. He, D.C. Mo, S.S. Lu, Int. J. Therm. Sci. 86, 276 (2014)CrossRefGoogle Scholar
  43. 43.
    G.B. Olowojoba, S. Kopsidas, S. Eslava, E.S. Gutierrez, A.J. Kinloch, C. Mattevi, V.G. Rocha, A.C. Taylor, J. Mater. Sci. 52, 7323 (2017)CrossRefGoogle Scholar
  44. 44.
    B. Tang, G. Hu, H. Gao, L. Hai, Int. J. Heat Mass Transf. 85, 420 (2015)CrossRefGoogle Scholar
  45. 45.
    D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, J. Colloid Interface Sci. 430, 108 (2014)CrossRefGoogle Scholar
  46. 46.
    R. Aradhana, S. Mohanty, S. Kumar, Compos. Sci. Technol. 169, 86 (2019)CrossRefGoogle Scholar
  47. 47.
    C. Bora, P. Gogoi, S. Baglari, S.K. Dolui, J. Appl. Polym. Sci. 129, 3432 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ruchi Aradhana
    • 1
    Email author
  • Smita Mohanty
    • 1
    • 2
  • Sanjay Kumar Nayak
    • 1
    • 2
  1. 1.Central Institute of Plastics Engineering & Technology (CIPET)ChennaiIndia
  2. 2.Laboratory for Advanced Research in Polymeric Materials (LARPM)Central Institute of Plastics Engineering & Technology (CIPET)BhubaneswarIndia

Personalised recommendations