Advertisement

Optimizing reaction kinetics of sequential deposition technique for ambient air and solution processed hybrid perovskite thin films

  • Zikriya Khan
  • Zakir Hussain
  • M. Arman Liaqat
  • S. Fahad
  • S. Ahmed
Article
  • 16 Downloads

Abstract

In this work, the reaction kinetics of sequential deposition technique were optimized to produce large area (~ 1 cm2), uniform and pinhole free hybrid CH3NH3PbI3 perovskite (MAPbI) thin films in ambient air; at room temperature and a relatively high humidity level of ~ 50%. The MAPbI thin films were grown upon a thin passivation layer of CH3NH3I (MAI) using conventional two step deposition scheme. The films were characterized using Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Electroimpedance Spectroscopy, Current–Voltage and DC-Hall effect measurements. The resultant MAPbI thin films demonstrated negligible amount of unreacted PbI2 because of the sandwich structure where PbI2 layer was embedded in-between two MAI layers. Thin films showed a decreased resistance (~ 14 MΩ), increased intrinsic charge carrier concentration (~ 9.3 × 1015 cm−3) and higher charge carrier mobilities (~ 195 cm2 V−1s−1). The decrease in resistance and increase in charge carrier mobilities were attributed to the reduced trap sites and grain boundaries in MAPbI thin film front face due to the MAI passivation layer. The increase in charge carrier density was a consequence of MAI passivation layer on the energy levels tuning of MAPbI. The MAPbI thin films also showed promising stability of above 70%; after 8 weeks of ambient air storage and without any encapsulation.

References

  1. 1.
    J. Huang, Y. Yuan, Y. Shao, Y. Yan, Nat. Rev. Mater. 2, 17042 (2017)CrossRefGoogle Scholar
  2. 2.
    B.R. Sutherland, E.H. Sargent, Nat. Photonics 10, 295 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Mahshid, W. Ting, H. Bin, Adv. Mater. 29, 1605242 (2017)CrossRefGoogle Scholar
  4. 4.
    S.M.M. Era, T. Tsutsui, S. Saito, Appl. Phys. Lett. 65, 676 (1994)CrossRefGoogle Scholar
  5. 5.
    K. Chondroudis, D.B. Mitzi, Chem. Mater. 11, 3028 (1999)CrossRefGoogle Scholar
  6. 6.
    C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Science 286, 945 (1999)CrossRefGoogle Scholar
  7. 7.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Xin, Z. Xiaodong, L. Lin, B. Jian, L. Shuang, Y. Wenlong, X. Yi, Adv. Func. Mater. 24, 7373 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Michael et al., Adv. Mater. 28, 923 (2016)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R.S. Sanchez, L. Otero, I. Mora-Sero, J. Phys. Chem. Lett. 5, 1628 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, ACS Nano 9, 1955 (2015)CrossRefGoogle Scholar
  13. 13.
    H.J. Jung, D. Kim, S. Kim, J. Park, V.P. Dravid, B. Shin, Adv. Mater. 30, 1802769 (2018)CrossRefGoogle Scholar
  14. 14.
    C. Aranda, C. Cristobal, L. Shooshtari, C. Li, S. Huettner, A. Guerrero, Sustain. Energy Fuels 1, 540 (2017)CrossRefGoogle Scholar
  15. 15.
    B.J. Bruijnaers, E. Schiepers, C.H.L. Weijtens, S.C.J. Meskers, M.M. Wienk, R.A.J. Janssen, J. Mater. Chem. A 6, 6882 (2018)CrossRefGoogle Scholar
  16. 16.
    J. You et al., Appl. Phys. Lett. 105, 183902 (2014)CrossRefGoogle Scholar
  17. 17.
    G.E. Eperon et al., ACS Nano 9, 9380 (2015)CrossRefGoogle Scholar
  18. 18.
    M.I. Ahmed, H.T. Butt, Z. Hussain, I.A. Shahid, A. Habib, J. Mater. Sci.: Mater. Electron. 27, 8 (2016)Google Scholar
  19. 19.
    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)CrossRefGoogle Scholar
  20. 20.
    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Liang, D.B. Mitzi, M.T. Prikas, Chem. Mater. 10, 403 (1998)CrossRefGoogle Scholar
  22. 22.
    J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, J. Mater. Chem. A 3, 10837 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Wang et al., Nanoscale 8, 6600 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Voranuch, L. Felix, J.A. Reum, R. Marin, A. Marisa, D. Thomas, Physica Status Solidi (RRL) - Rapid Res Lett. 08, 763 (2014)CrossRefGoogle Scholar
  25. 25.
    Z. Hong, M. Jian, H. Hexiang, Z. Di, Z.H.L.X. Fengxian, W.K. Sing, G. Michael, Adv. Energy Mater. 5, 1501354 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Xie, F. Shao, Y. Wang, T. Xu, D. Wang, F. Huang, ACS Appl. Mater. Interfaces 7, 12937 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Zhao, K. Zhu, J. Mater. Chem. A 3, 9086 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Zhang, J. Ye, L. Zhu, H. Zheng, G. Liu, X. Liu, B. Duan, X. Pan, S. Dai, Nanoscale 9, 4691 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Saleem, A. Habib, J. Alloys Compd. 679, 177 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Javed, M. Mujahid, M. Islam, U. Manzoor, Mater. Chem. Phys. 132, 509 (2012)CrossRefGoogle Scholar
  31. 31.
    M.I. Ahmed, Z. Hussain, M. Mujahid, A.N. Khan, S.S. Javaid, A. Habib, AIP Adv. 6, 065303 (2016)CrossRefGoogle Scholar
  32. 32.
    Z. Hawash, S.R. Raga, D.-Y. Son, L.K. Ono, N.-G. Park, Y. Qi, J. Phys. Chem. Lett. 8, 3947 (2017)CrossRefGoogle Scholar
  33. 33.
    Z. Song, S.C. Watthage, A.B. Phillips, B.L. Tompkins, R.J. Ellingson, M.J. Heben, Chem. Mater. 27, 4612 (2015)CrossRefGoogle Scholar
  34. 34.
    G. Pellegrino, S. Colella, I. Deretzis, G.G. Condorelli, E. Smecca, G. Gigli, A. La Magna, A. Alberti, J. Phys. Chem. C 119, 19808 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Chen et al., Nat. Commun. 7, 12253 (2016)CrossRefGoogle Scholar
  36. 36.
    Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26, 6503 (2014)CrossRefGoogle Scholar
  37. 37.
    D.-Y. Son et al., Nat. Energy 1, 16081 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Engineering, School of Chemical and Materials Engineering (SCME)National University of Sciences and TechnologyIslamabadPakistan
  2. 2.Centre for Advanced Electronics and Photovoltaic Engineering (CAEPE)International Islamic UniversityIslamabadPakistan

Personalised recommendations