Advertisement

CoFe2O4 nanoparticles directly grown on carbon nanotube with coralline structure as anodes for lithium ion battery

  • Meng Yu
  • Zhenhe Feng
  • Ying HuangEmail author
  • Ke Wang
  • Liu Liu
Article
  • 32 Downloads

Abstract

In this work, tiny CoFe2O4 nanoparticles with a diameter of several nanometers were firmly grown on carbon nanotube (CNT) through a solvothermal process followed with calcination step. The composite shows a coralline structure, where CoFe2O4 nanoparticles are dispersed finely on the surface of CNT. The coralline CoFe2O4–CNT composite electrode can deliver initial discharge/charge capacities of 1183.6/876.1 mAh g−1 at 100 mA g−1, with a Coulombic efficiency reaching up to 74.0%. The capacity drops first but ascends latter when the electrode is cycled 220 times at 200 mA g−1, giving a value of 747.5 mAh g−1 at 220th discharge process. Besides, the composite displays a capacity of 620.8 mAh g−1 even at a high rate of 1600 mA g−1, larger than commercialized graphite (372 mAh g−1). Thus, coralline CoFe2O4–CNT composite of remarkable electrochemical properties makes it a promising anode for lithium ion batteries.

Notes

Acknowledgements

This work was financially supported by the national natural science foundation of China (Grant No. 51872236), the Natural Science Foundation of Shaanxi Province (Grant No. 2015JZ014) and the Innovation Foundation of Shanghai Aero-space Science and Technology (Grant No. SAST2016114). Moreover, we would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for supplying the testing equipment.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest.

References

  1. 1.
    M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  2. 2.
    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRefGoogle Scholar
  3. 3.
    J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)CrossRefGoogle Scholar
  4. 4.
    T.H. Kim, J.S. Park, S.K. Chang, S. Choi, H.R. Ji, H.K. Song, The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2, 860–872 (2012)CrossRefGoogle Scholar
  5. 5.
    P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006)CrossRefGoogle Scholar
  6. 6.
    D. Bresser, E. Paillard, R. Kloepsch, S. Krueger, M. Fiedler, R. Schmitz, D. Baither, M. Winter, S. Passerini, Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Adv. Energy Mater. 3, 513–523 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Fu, Y. Wan, H. Xia, X. Wang, Nickel ferrite-graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries. J. Power Sources 213, 338–342 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Pasero, N. Reeves, A.R. West, Co-doped Mn3O4: a possible anode material for lithium batteries. J. Power Sources 141, 156–158 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, J. Park, B. Sun, H. Ahn, G. Wang, Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible lithium storage. Chemistry 43, 1940–1946 (2012)Google Scholar
  10. 10.
    M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Hui, D. Zhu, Y. Fu, W. Xin, CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim. Acta 83, 166–174 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 254, 6972–6975 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Xiang, H. Wu, K.H. Zhang, M. Coto, T. Zhao, S. Chen, B. Dong, S. Lu, A. Abdelkader, Y. Guo, Quick one-pot synthesis of amorphous carbon-coated cobalt-ferrite twin elliptical frustums for enhanced lithium storage capability. J. Mater. Chem. A 5, 8062–8069 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Fu, D. Chen, M. Wang, Y. Yang, Q. Wu, J. Ma, X. Zhao, Synthesis of porous CoFe2O4 octahedral structures and studies on electrochemical Li storage behavior. Electrochim. Acta 116, 164–169 (2014)CrossRefGoogle Scholar
  15. 15.
    A.K. Rai, J. Gim, T.V. Thi, D. Ahn, S.J. Cho, J. Kim, High rate capability and long cycle stability of Co3O4/CoFe2O4 nanocomposite as an anode material for high-performance secondary lithium ion batteries. J. Phys. Chem. C 118, 11234–11243 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Yao, J. Kong, X. Tang, D. Zhou, C. Zhao, R. Zhou, X. Lu, Facile synthesis of porous CoFe2O4 nanosheets for lithium-ion battery anodes with enhanced rate capability and cycling stability. Rsc Adv. 4, 27488–27492 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Zhang, Y. Wang, M. Zhang, Q. Tan, X. Lv, Z. Zhong, F. Su, Mesoporous CoFe2O4 nanospheres cross-linked by carbon nanotubes as high-performance anodes for lithium-ion batteries. J. Mater. Chem. A 1, 7444–7450 (2013)CrossRefGoogle Scholar
  18. 18.
    Z.H. Li, T.P. Zhao, X.Y. Zhan, D.S. Gao, Q.Z. Xiao, G.T. Lei, High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta 55, 4594–4598 (2010)CrossRefGoogle Scholar
  19. 19.
    N. Li, M. Zheng, X. Chang, G. Ji, H. Lu, L. Xue, L. Pan, J. Cao, Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J. Solid State Chem. 184, 953–958 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Fu, Z.J. Du, W. Zou, H.Q. Li, C. Zhang, Simple fabrication of strongly coupled cobalt ferrite/carbon nanotube composite based on deoxygenation for improving lithium storage. Carbon 65, 112–123 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim. Acta 53, 2380–2385 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Deng, Q. Zhang, S. Tang, L. Zhang, S. Deng, Z. Shi, G. Chen, One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 47, 6828–6830 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Xia, Y. Qian, Y. Fu, X. Wang, Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci. 17, 67–71 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Duncan, F.M. Courtel, Y. Abu-Lebdeh, A study of the solid-electrolyte-interface (SEI) of ZnMn2O4: a conversion-type anode material for Li-ion batteries. J. Electrochem. Soc. 162, A7110–A7117 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Guo, X. Lu, X. Fang, Y. Mao, Z. Wang, L. Chen, X. Xu, H. Yang, Y. Liu, Lithium storage in hollow spherical ZnFeO as anode materials for lithium ion batteries. Electrochem. Commun. 12, 847–850 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Liu, J. Xiao, X. Zeng, P. Dong, J. Zhao, Y. Zhang, X. Li, Combustion synthesized macroporous structure MFe2O4 (M = Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries. J. Alloys Compds. 699, 401–407 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Yao, X. Hou, Q. Ru, X. Tang, L. Zhao, D. Sun, A facile bubble-assisted synthesis of porous Zn ferrite hollow microsphere and their excellent performance as an anode in lithium ion battery. J. Solid State Electron. 17, 2055–2060 (2013)CrossRefGoogle Scholar
  28. 28.
    X. Zhang, Y. Xie, Y. Sun, Q. Zhang, Q. Zhu, D. Hou, J. Guo, Self-template synthesis of CoFe2O4 nanotubes for high-performance lithium storage. Rsc Adv. 5, 29837–29841 (2015)CrossRefGoogle Scholar
  29. 29.
    Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Acs Nano 4, 3187–3194 (2010)CrossRefGoogle Scholar
  30. 30.
    J. Wang, Q. Zhang, X. Li, B. Zhang, L. Mai, K. Zhang, Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12, 437–446 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Wang, J. Wu, Z. Wu, L. Han, T. Huang, H.L. Xin, D. Wang, High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochim. Acta 244, 8–15 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Abouali, M.A. Garakani, Z.L. Xu, J.K. Kim, NiCo2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors. Carbon 102, 262–272 (2016)CrossRefGoogle Scholar
  33. 33.
    Q. Ru, X. Song, Y. Mo, L. Guo, S. Hu, Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances. J. Alloys Compds. 654, 586–592 (2016)CrossRefGoogle Scholar
  34. 34.
    M.D.L. And, D. Aurbach, Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J. Phys. Chem. B 101, 4630–4640 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meng Yu
    • 1
  • Zhenhe Feng
    • 2
  • Ying Huang
    • 1
    Email author
  • Ke Wang
    • 1
  • Liu Liu
    • 3
  1. 1.MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Shanghai Institute of Space PowerShanghaiPeople’s Republic of China
  3. 3.Major of English Literature, School of Foreign StudiesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations