Advertisement

Synthesis of Bi2WO6 photocatalyst modified by SDBS and photocatalytic performance under visible light

  • Shuang Zhong
  • Chen Lv
  • Mengnan Shen
  • Lei Wu
  • Chenyang LiEmail author
Article
  • 15 Downloads

Abstract

Bismuth tungstate (Bi2WO6) photocatalysts, which modified with different ratios of sodium dodecyl benzene sulfonate (SDBS) and with enhanced visible light-driven activity, were synthesized by a facile solvothermal process. The photocatalysts were characterized by X-ray diffraction, scanning electron and transmission electron microscopies, and X-ray photoelectron and ultraviolet–visible diffuse reflectance spectroscopies. SDBS addition was found to control particle morphology and improve photocatalytic activity of Bi2WO6 catalysts. The solvent-thermal reaction time was critical in determining the catalysts’ structures and shapes and optimal at 16 h. Photocatalytic activities of SDBS–Bi2WO6 were determined by photocatalytic degradation of tetracycline (TC) in aqueous solution under visible light irradiation. Optical properties and TC degradation tests showed these SDBS–Bi2WO6 catalysts to exhibit enhanced visible light-driven photodegradation for TC. The photocatalytic activity for TC degradation was maximized at 90.39% after 90 min at 1.0 wt% SDBS dosage. In addition, the possible mechanisms for catalyst formation and photocatalytic degradation were discussed.

Notes

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation [Grant No. 2017M621214], also supported by the National Natural Science Foundation of China [Grant No. 21607050], the Science and Technology Projects of the Ministry of Housing and Urban–rural development (Grant No. 2017-K7-003), the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization [Grant No. RERU2017023], the Natural Science Outstanding Young Talents Foundation of Jilin Province [Grant No. 20190103144JH], and the China Scholarship Council.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, J. Hazard. Mater. 209, 137 (2012).  https://doi.org/10.1016/j.jhazmat.2012.01.006 CrossRefGoogle Scholar
  2. 2.
    H. Wang, X. Wu, H. Zhao, X. Quan, Chin. Sci. Bull. 57, 601 (2012).  https://doi.org/10.1007/s11434-011-4897-x CrossRefGoogle Scholar
  3. 3.
    X. Yu, Z. Lu, D. Wu et al., React. Kinet. Mech. Catal. 111, 347 (2014).  https://doi.org/10.1007/s11144-013-0631-9 CrossRefGoogle Scholar
  4. 4.
    G. Jacome-Acatitla, F. Tzompantzi, R. Lopez-Gonzalez, C. Garcia-Mendoza, J.M. Alvaro, R. Gomez, J. Photochem. Photobiol. A: Chem. 277, 82 (2014).  https://doi.org/10.1016/j.jphotochem.2013.12.014 CrossRefGoogle Scholar
  5. 5.
    D. Zhou, Z. Xu, S. Dong et al., Environ. Sci. Technol. 49, 7776 (2015).  https://doi.org/10.1021/acs.est.5b00989 CrossRefGoogle Scholar
  6. 6.
    I. Yahiaoui, F. Aissani-Benissad, F. Fourcade, A. Amrane, Chem. Eng. J. 221, 418 (2013).  https://doi.org/10.1016/j.cej.2013.01.091 CrossRefGoogle Scholar
  7. 7.
    G.R. Bardajee, A. Pourjavadi, S. Ghavami, R. Soleyman, F. Jafarpour, J. Photochem. Photobiol. B: Biol. 102, 232 (2011).  https://doi.org/10.1016/j.jphotobiol.2010.12.008 CrossRefGoogle Scholar
  8. 8.
    Z. Lu, F. Chen, M. He et al., Chem. Eng. J. 249, 15 (2014).  https://doi.org/10.1016/j.cej.2014.03.077 CrossRefGoogle Scholar
  9. 9.
    T. Wang, F. Zhang, G. Xiao, S. Zhong, C. Lu, Photochem. Photobiol. 91, 291 (2015).  https://doi.org/10.1111/php.12409 CrossRefGoogle Scholar
  10. 10.
    S. Zhong, F. Zhang, W. Lu, T. Wang, L. Qu (2015) RSC Adv.  https://doi.org/10.1039/c5ra08538a Google Scholar
  11. 11.
    L.H. Hoang, N.D. Phu, P.Do Chung, P.C. Guo, X.B. Chen, W.C. Chou, J. Mater. Sci. Mater. Electron. 28, 12191 (2017).  https://doi.org/10.1007/s10854-017-7034-z CrossRefGoogle Scholar
  12. 12.
    Y. Liu, R. Cai, T. Fang, J. Wu, A. Wei, Mater. Res. Bull. 66, 96 (2015).  https://doi.org/10.1016/j.materresbull.2015.02.032 CrossRefGoogle Scholar
  13. 13.
    S.-P. Hu, C.-Y. Xu, L. Zhen, Mater. Lett. 95, 117 (2013).  https://doi.org/10.1016/j.matlet.2012.12.058 CrossRefGoogle Scholar
  14. 14.
    S.-P. Hu, C.-Y. Xu, W.-S. Wang, F.-X. Ma, L. Zhen, Ceram. Int. 40, 11689 (2014).  https://doi.org/10.1016/j.ceramint.2014.03.179 CrossRefGoogle Scholar
  15. 15.
    X. Lin, Z. Liu, X. Guo et al., Mater. Sci. Eng.: B 188, 35 (2014).  https://doi.org/10.1016/j.mseb.2014.06.005 CrossRefGoogle Scholar
  16. 16.
    L. Zhang, H. Wang, Z. Chen, P.K. Wong, J. Liu, Appl. Catal. B 106, 1 (2011).  https://doi.org/10.1016/j.apcatb.2011.05.008 Google Scholar
  17. 17.
    G.-Y. Zhang, Y. Feng, Q.-S. Wu, Y.-Y. Xu, D.-Z. Gao (2012) Mater. Res. Bull. 47, 1919.  https://doi.org/10.1016/j.materresbull.2012.04.023 CrossRefGoogle Scholar
  18. 18.
    Y. Chen, C. Xing, S. Ji, H. Liang, J. Fuel Chem. Technol. 42, 978 (2014).  https://doi.org/10.1016/S1872-5813(14)60040-2 CrossRefGoogle Scholar
  19. 19.
    P. Vahdatkhah, H.R.M. Hosseini, A. Khodaei et al., Chem. Phys. 453, 35 (2015).  https://doi.org/10.1016/j.chemphys.2015.03.007 CrossRefGoogle Scholar
  20. 20.
    Y.N. Zhu, J.J. Mu, G.H. Zheng et al., Ceram. Int. 42, 17347 (2016).  https://doi.org/10.1016/j.ceramint.2016.08.031 CrossRefGoogle Scholar
  21. 21.
    S. Zhong, F. Zhang, B. Yu, P. Zhao, L. Jia, S. Zhang, J. Mater. Sci. Mater. Electron. 27, 3011 (2016).  https://doi.org/10.1007/s10854-015-4123-8 CrossRefGoogle Scholar
  22. 22.
    F. Xu, H. Chen, C. Xu et al., J. Colloid Interface Sci. 525, 97 (2018).  https://doi.org/10.1016/j.jcis.2018.04.057 CrossRefGoogle Scholar
  23. 23.
    F. Zhang, R. Sun, R. Li et al., J. Sol-Gel. Sci. Technol. 86, 640 (2018).  https://doi.org/10.1007/s10971-018-4683-1 CrossRefGoogle Scholar
  24. 24.
    S. Zhong, N. Song, F. Zhang, Y. Wang, L. Bai, J. Mater. Sci. Mater. Electron. 28, 6262 (2017).  https://doi.org/10.1007/s10854-016-6307-2 CrossRefGoogle Scholar
  25. 25.
    T. Wang, S. Zhong, S. Zou, F. Jiang, L. Feng, X. Su, Photochem. Photobiol. 93, 1034 (2017).  https://doi.org/10.1111/php.12739 CrossRefGoogle Scholar
  26. 26.
    Z.-Q. Li, X.-T. Chen, Z.-L. Xue, J. Colloid Interface Sci. 394, 69 (2013).  https://doi.org/10.1016/j.jcis.2012.12.002 CrossRefGoogle Scholar
  27. 27.
    M.-S. Gui, W.-D. Zhang, Q.-X. Su, C.-H. Chen (2011) J. Solid State Chem. 184, 1977.  https://doi.org/10.1016/j.jssc.2011.05.057 CrossRefGoogle Scholar
  28. 28.
    J. Di, C. Chen, C. Zhu et al., Appl. Catal. B-Environ. 238, 119 (2018).  https://doi.org/10.1016/j.apcatb.2018.06.066 CrossRefGoogle Scholar
  29. 29.
    P. Ju, P. Wang, B. Li et al., Chem. Eng. J. 236, 430 (2014).  https://doi.org/10.1016/j.cej.2013.10.001 CrossRefGoogle Scholar
  30. 30.
    X. Huang, H. Chen, Appl. Surf. Sci. 284, 843 (2013).  https://doi.org/10.1016/j.apsusc.2013.08.019 CrossRefGoogle Scholar
  31. 31.
    L.H. Hoang, N.D. Phu, H. Peng, X.B. Chen, J. Alloys Compd. 744, 228 (2018).  https://doi.org/10.1016/j.jallcom.2018.02.094 CrossRefGoogle Scholar
  32. 32.
    Q. Xiao, J. Zhang, C. Xiao, X.K. Tan, Catal. Commun. 9, 1247 (2008).  https://doi.org/10.1016/j.catcom.2007.11.011 CrossRefGoogle Scholar
  33. 33.
    Y.R. Shang, Y.P. Cui, R.X. Shi, P. Yang, Mater. Sci. Semicond. Process. 89, 240 (2019).  https://doi.org/10.1016/j.mssp.2018.09.026 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
  2. 2.Key Laboratory of Groundwater Resources and Environment, Ministry of EducationJilin UniversityChangchunChina
  3. 3.Institute of Water Resources and EnvironmentJilin UniversityChangchunChina

Personalised recommendations