NH4F and carbon nanotubes co-modified LiNi0.88Co0.09Al0.03O2 cathode material with enhanced electrochemical properties for Li-ion batteries

  • Aolin Hou
  • Yanxia LiuEmail author
  • Libin Ma
  • Tao Li
  • Baozeng Ren
  • Pengfei Zhang


LiNi0.88Co0.09Al0.03O2 cathode material was modified with NH4F and carbon nanotubes through high temperature solid phase reaction and a superficial deposit process. The results of X-ray diffraction demonstrate that the interslab distances was enlarged after fluorine doping, which is more conductive to the internal diffusion of lithium ions. The X-ray photoelectron spectroscopy confirms the changes of valence states of the metallic elements after F doping. The Scanning electron microscope and the transmission electron microscopy results demonstrate that the carbon nanotubes coating layer was successfully loaded on the surface of the material. The rate capability and the cycle stability of the composite materials were improved remarkably. Eventually, the modified cathode material exhibits a reversible capacity up to 194.3 mA h g− 1 at 0.1C, corresponding to 88% capacity retention after 150 cycles at 2C between 2.8 and 4.3 V.



This work was supported by the Science and technology open cooperation project of Henan province (No. 182106000022 and No. 182102310802), Zhengzhou major special project (No. 174PZDZX570).


  1. 1.
    J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135, 1167 (2013)CrossRefGoogle Scholar
  2. 2.
    T. Ohzuku, A. Ueda, M. Kouguchi, J. Electrochem. Soc. 142, 4033 (1995)CrossRefGoogle Scholar
  3. 3.
    W. Waag, C. Fleischer, D.U. Sauer, J. Power Sources. 258, 321 (2014)CrossRefGoogle Scholar
  4. 4.
    W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, Angew. Chem. 54, 4440 (2015)CrossRefGoogle Scholar
  5. 5.
    J.M. Lim, T. Hwang, D. Kim, M.S.K. Park, C.S. Cho, Sci. Rep. 7, 39669 (2017)CrossRefGoogle Scholar
  6. 6.
    G. Li, Z. Zhang, Z. Huang, C. Yang, Z. Zuo, H. Zhou, J. Solid State Electrochem. 21, 673 (2017)CrossRefGoogle Scholar
  7. 7.
    B. Huang, X. Li, Z. Wang, H. Guo, X. Xiong, Ceram. Int.. 40, 13223 (2014)CrossRefGoogle Scholar
  8. 8.
    X. Xiong, D. Ding, Y. Bu, Z. Wang, B. Huang, H. Guo, J. Mater. Chem. A. 2, 11691 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Chen, T. He, Y. Su, Y. Lu, L. Bao, L. Chen, ACS Appl. Mater. Interfaces 9, 29732 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources 195, 7904 (2010)CrossRefGoogle Scholar
  11. 11.
    Y.X. Wang, K.H. Shang, W. He, X.P. Ai, Y.L. Cao, H.X. Yang, ACS Appl. Mater. Interfaces 7, 13014 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Shen, D. Li, Y. Tang, C. Li, J. Mater. Sci. Mater. Electron. 29, 9717 (2018)CrossRefGoogle Scholar
  13. 13.
    J.W. Li, Y. Li, Y.N. Guo, J.L. Lv, W.T. Yi, P.H. Ma, J. Mater. Sci. Mater. Electron. 29, 10702 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Yuan, Q.J. Xu, X. Liu, W. Shen, H. Liu, Electrochim. Acta 207, 120 (2016)CrossRefGoogle Scholar
  15. 15.
    D. Mohanty, K. Dahlberg, D.M. King, L.A. David, A.S. Sefat, D.L. Wood, Sci. Rep. 6, 26532 (2016)CrossRefGoogle Scholar
  16. 16.
    S.W. Lee, M.S. Kim, J.H. Jeong, D.H. Kim, K.Y. Chung, K.C. Roh, J. Power Sources 360, 206 (2017)CrossRefGoogle Scholar
  17. 17.
    Y.K. Sun, M.J. Lee, C.S. Yoon, J. Hassoun, K. Amine, Adv. Mater. 24, 1192 (2012)CrossRefGoogle Scholar
  18. 18.
    J.M. Zheng, Z.R. Zhang, X.B. Wu, Z.X. Dong, Z. Zhu, J. Electrochem. Soc. 155, A775 (2008)CrossRefGoogle Scholar
  19. 19.
    R.J. Zheng, W.H. Wang, Y.K. Dai, Q.X. Ma, Y.L. Liu, D.Y. Mu, R.H. Li, J. Ren, C.S. Dai, Green Energy Environ. 1, 42 (2017)CrossRefGoogle Scholar
  20. 20.
    J.M. Zheng, W.H. Kan, A. Manthiram, ACS Appl. Mater. Interfaces 7, 6926 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Yang, J. Wang, X. Li, D. Wang, J. Liu, J. Mater. Chem. 22, 7537 (2012)CrossRefGoogle Scholar
  22. 22.
    G.H. Kim, J.H. Kim, S.T. Myung, Y.K. Sun, J. Power Sources 146, 602 (2005)CrossRefGoogle Scholar
  23. 23.
    J. Lei, F. Mclarnon, R. Kostecki, J. Phys. Chem. B 109, 952 (2005)CrossRefGoogle Scholar
  24. 24.
    S.U. Woo, B.C. Park, C.S. Yoon, S.T. Myung, J. Prakash, Y.K. Sun, J. Electrochem. Soc. 154, A649 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Liu, Z. Wang, Y. Huang, Z. Ni, J. Bai, S. Kang, J. Alloys Compd. 731, 636 (2018)CrossRefGoogle Scholar
  26. 26.
    P. Yue, Z. Wang, X. Li, X. Xiong, J. Wang, X. Wu, Electrochim. Acta 95, 112 (2013)CrossRefGoogle Scholar
  27. 27.
    Z.F. Tang, J.J. Bao, Q.X. Du, Y. Shao, M.H. Gao, B.K. Zou, C.H. Chen, ACS Appl. Mater. Interfaces 8, 34879 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Duan, C. Wu, Y. Cao, D. Huang, K. Du, Z. Peng, G. Hua, J. Alloys Compd. 695, 91 (2017)CrossRefGoogle Scholar
  29. 29.
    X. Li, Z.W. Xie, W.J. Liu, W.J. Ge, H. Wang, M.Z. Qua, Electrochim. Acta 174, 1122 (2015)CrossRefGoogle Scholar
  30. 30.
    Z.P. Qiu, Y.J. Zhang, M.Y. Zhang, P. Dong, S.B. Xia, J. Mater. Sci. Mater. Electron. 28, 18699 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Zhou, G. Wang, W. Tang, Y. Xiao, K. Yan, Electrochim. Acta 261, 565 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Prabu, M.V. Reddy, S. Selvasekarapandian, G.V.S. Rao, B.V.R. Chowdari, Electrochim. Acta 85, 572 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aolin Hou
    • 1
    • 2
  • Yanxia Liu
    • 2
    • 3
    Email author
  • Libin Ma
    • 2
  • Tao Li
    • 1
  • Baozeng Ren
    • 1
  • Pengfei Zhang
    • 2
  1. 1.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouChina
  2. 2.Zhengzhou Key Laboratory of Energy Storage Science and TechnologyInstitute of Emerging Industrial TechnologyZhengzhouChina
  3. 3.Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations