Advertisement

Ni-assisted crystallization of few-layer transition metal dichalcogenide ultra-thin films

  • Yang Wang
  • Tao Chen
  • Tianbao Zhang
  • Hao Zhu
  • Lin Chen
  • Qingqing Sun
  • David Wei Zhang
Article
  • 20 Downloads

Abstract

Two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors have received tremendous attention in various research fields in recent years. Different synthetic approaches to grow large-scale TMD thin films have been widely explored for effective device integration and circuit-level applications. However, the poor crystalline quality of most synthesized TMD films has seriously restricted their further implementation in high-performance nanoelectronic devices. Here, we demonstrated a Ni-assisted synthesis of TMD films based on atomic layer deposition. Two crystallization mechanisms have been studied: metal-induced crystallization and metal-induced lateral crystallization. The involvement Ni has significantly lowered the crystallization temperature in both cases and the crystallinity of TMD films has been greatly enhanced which is confirmed by Raman and X-ray photoelectron spectroscopy characterizations. Our results can pave the way for advanced applications of high-quality large-area synthetic TMDs and device integrations with low temperature processes.

Notes

Acknowledgements

This work was sponsored by the NSFC (Grant Nos. 61522404, 61474029, 61427901 and 61704030), the Shanghai Pujiang Program (Grant No. 17PJ1400500), the National High Technology Research and Development Program (Grant No. 2015AA016501), the National Major Projects of Science and Technology (Grant No. 2017ZX02315005), and the Support Plans for the Youth Top-Notch Talents of China.

References

  1. 1.
    Q. Cao, Y.W. Dai, J. Xu et al., Realizing stable P-type transporting in two-dimensional WS2 films. ACS Appl. Mater. Interfaces 9, 18215 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Zhang, Y. Wang, J. Xu et al., High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition. 2D Mater. 5, 015028 (2018)CrossRefGoogle Scholar
  3. 3.
    N. Perealópez, Z. Lin, N.R. Pradhan et al., CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1, 011004 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Splendiani, L. Sun, Y. Zhang et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Li, Z. Yin, Q. He et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012)CrossRefGoogle Scholar
  6. 6.
    A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013)CrossRefGoogle Scholar
  7. 7.
    T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007)CrossRefGoogle Scholar
  8. 8.
    Q.H. Wang, K. Kalantarzadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 2237–2249 (2011)CrossRefGoogle Scholar
  10. 10.
    H.S. Lee, S.S. Baik, K. Lee et al., Metal semiconductor field-effect transistor with MoS2/conducting NiO(x) van der Waals Schottky interface for intrinsic high mobility and photoswitching speed. ACS Nano 9, 8312–8320 (2015)CrossRefGoogle Scholar
  11. 11.
    M.L. Shi, L. Chen, T.B. Zhang et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 13, 1603157 (2017)CrossRefGoogle Scholar
  12. 12.
    C.M. Orofeo, S. Suzuki, Y. Sekine, H. Hibino, Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl. Phys. Lett. 105, 083112 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Tarasov, P.M. Campbell, M.Y. Tsai et al., Highly uniform trilayer molybdenum disulfide for wafer-scale device fabrication. Adv. Funct. Mater. 24, 6389–6400 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Zhu, T. Low, Y.H. Lee et al., Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Park, N. Choudhary, J. Smith, G. Lee, M. Kim, W. Choi, Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl. Phys. Lett. 106, 012104 (2015)CrossRefGoogle Scholar
  16. 16.
    R. Morrish, T. Haak, C.A. Wolden, Low-temperature synthesis of n-type WS2 thin films via H2S plasma sulfurization of WO3. Chem. Mater. 26, 3986–3992 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Min, High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. Langmuir ACS J. Surf. Colloids 31, 1196–1202 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Valdivia, D.J. Tweet, J.F.C. Jr, Atomic layer deposition of two dimensional MoS2 on 150 mm substrates. J. Vac. Sci. Technol. A 34, 021515 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Mohiddon, G. Krishna, Metal induced crystallization. Cryst.—Sci. Technol., (IntechOpen, London, 2012).  https://doi.org/10.5772/50064 Google Scholar
  20. 20.
    G.Z. Radnóczi, E. Dodony, G. Battistig et al., Structural characterization of nanostructures grown by Ni metal induced lateral crystallization of amorphous-Si. J. Appl. Phys. 119, 065303 (2016)CrossRefGoogle Scholar
  21. 21.
    Z.M. Wang, J.Y. Wang, L.P.H. Jeurgens, E.J. Mittemeijer, Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: experiments and calculations on Al/a-Ge and Al/a-Si bilayers. Phys. Rev. B 77, 045424 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Brunken, R. Mientus, K. Ellmer, Metal-sulfide assisted rapid crystallization of highly (001)-textured tungsten disulphide (WS2) films on metallic back contacts. Phys. Status Solidi 209, 317–322 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Brunken, M. Wollgarten, K. Ellmer, Analysis of the early stages of the rapid, nickel-assisted crystallization of WS2 films. J. Appl. Phys. 120, 100–102 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.Y. Wang, Z.H. Ni, Z.X. Shen, H.M. Wang, Y.H. Wu, Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 92, 043121 (2008)CrossRefGoogle Scholar
  25. 25.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S.J. Ryu, Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4, 2695–2700 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of ASIC and System, School of MicroelectronicsFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations